关于数学史的论文参考【多篇】.docx
上传人:lj****88 上传时间:2024-09-14 格式:DOCX 页数:56 大小:49KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

关于数学史的论文参考【多篇】.docx

关于数学史的论文参考【多篇】.docx

预览

免费试读已结束,剩余 46 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

关于数学史的论文参考【多篇】摘要:关于数学史的论文参考【多篇】为的会员投稿推荐,但愿对你的学习工作带来帮助。数学史的论文参考篇一浅谈流形概念的演变与理论发展一、引言流形是20世纪数学有代表性的基本概念,它集几何、代数、分析于一体,成为现代数学的重要研究对象。在数学中,流形作为方程的非退化系统的解的集合出现,也是几何的各种集合和允许局部参数化的其他对象。〔1〕53物理学中,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。流形是局部具有欧氏空间性质的拓扑空间,粗略地说,流形上每一点的附近和欧氏空间的一个开集是同胚的,流形正是一块块欧氏空间粘起来的结果。从整体上看,流形具有拓扑结构,而拓扑结构是“软”的,因为所有的同胚变形会保持拓扑结构不变,这样流形具有整体上的柔性,可流动性,也许这就是中文译成流形(该译名由着名数学家和数学教育学家江泽涵引入)的原因。流形作为拓扑空间,它的起源是为了解决什么问题?是如何解决的?谁解决的?形成了什么理论?这是几何史的根本问题。目前国内外对这些问题已有一些研究〔1-7〕,本文在已有研究工作的基础上,对流形的历史演变过程进行了较为深入、细致的分析,并对上述问题给予解答。二、流形概念的演变流形概念的起源可追溯到高斯(C.F.Gauss,1777-1855)的内蕴几何思想,黎曼(C.F.B.Riemann,1826-1866)继承并发展了的高斯的想法,并给出了流形的描述性定义。随着集合论和拓扑学的发展,希尔伯特(D.Hilbert,1862-1943)用公理化方案改良了黎曼对流形的定义,最终外尔(H.Weyl,1885-1955)给出了流形的严格数学定义。1.高斯-克吕格投影和曲纹坐标系十八世纪末及十九世纪初,频繁的拿破仑战争和欧洲经济的发展迫切需要绘制精确的地图,于是欧洲各国开始有计划地实施本国领域的大地测量工作。1817年,汉诺威政府命令高斯精确测量从哥廷根到奥尔顿子午线的弧长,并绘制奥尔顿的地图,这使得高斯转向大地测量学的问题与实践。高斯在绘制地图中创造了高斯-克吕格投影,这是一种等角横轴切椭圆柱投影,它假设一个椭圆柱面与地球椭球体面横切于某一条经线上,按照等角条件将中央经线东、西各3°或1.5°经线范围内的经纬线投影到椭圆柱面上,然后将椭圆柱面展开成平面。采用分带投影的方法,是为了使投影边缘的变形不致过大。当大的控制网跨越两个相邻投影带,需要进行平面坐标的邻带换算。高斯-克吕格投影相当于把地球表面看成是一块块平面拼起来的,并且相邻投影带的坐标可以进行换算。这种绘制地图的方式给出了“流形”这个数学概念的雏形。大地测量的实践导致了高斯曲面论研究的丰富成果。由于地球表面是个两极稍扁的不规则椭球面,绘制地图实际上就是寻找一般曲面到平面的保角映射。高斯利用复变函数,得出两个曲面之间存在保角映射的充要条件是两个曲面的第一类基本量成比例。高斯关于这一成果的论文《将一给定曲面投影到另一曲面而保持无穷小部分相似性的一般方法》使他获得了1823年哥本哈根科学院的大奖,也使他注意到当比例常数为1时,一个曲面可以完全展开到另一个曲面上。高斯意识到这个成果的重要性,在论文的标题下面写下了一句话:“这些结果为重大的理论铺平了道路。”〔8〕189这里重大的理论就是高斯后来建立的内蕴几何学。全面展开高斯的内蕴几何思想的是他1827年的论文《关于曲面的一般研究》,这是曲面论建立的标志性论述。〔2〕163高斯在这篇文章中有两个重要创举:第一,高斯曲率只依赖于曲面的度量,即曲面的第一基本形式;第二,测地三角形内角和不一定等于180°,它依赖于三角形区域的曲率积分。高斯的发现表明,至少在二维情况下可以构想一种只依赖于第一基本形式的几何,即曲面本身就是一个空间而不需要嵌入到高维空间中去。〔3〕32,〔4〕308高斯在这两篇论文中都使用曲纹坐标(u,v)表示曲面上的一个点,这相当于建立了曲面上的局部坐标系。突破笛卡尔直角坐标的局限性是高斯迈出的重要一步,但问题是:曲纹坐标只适用于曲面的局部,如果想使曲面上所有的点都有坐标表示,就需要在曲面上建立若干个局部坐标系,那么这些坐标系是否彼此协调一致?这是高斯的几何的基础。高斯当时不具备足够的数学工具来发展他的几何构想,但高斯对空间的认识深刻地影响了黎曼。2.黎曼的“关于几何基础的假设”黎曼在1851年的博士论文《单复变函数的一般理论》中,为研究多值解析函数曾使用黎曼面的概念,也就是一维复流形,但流形是什么还没有定义。在高斯的几何思想和赫巴特(J.F.Herbart,1776-1841)的哲学思想的影响下,黎曼1854年在哥廷根做了着名演讲《关于几何基础的假设》,演讲中他分析了几何的全部假设,建立了现代的几何观。〔5〕2全文分三部分,第一部分是n维流形的概念,第二部分是适用