遗传算法理论与应用.doc
上传人:sy****28 上传时间:2024-09-11 格式:DOC 页数:13 大小:1.1MB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

遗传算法理论与应用.doc

遗传算法理论与应用.doc

预览

免费试读已结束,剩余 3 页请下载文档后查看

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

遗传算法理论与应用遗传算法(geneticalgorithms,GA)是人工智能的重要新分支,是基于达尔文进化论,在微型计算机上模拟生命进化机制而发展起来的一门新学科。它根据适者生存、优胜劣汰等自然进化规则来进行搜索计算和问题求解。遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化概率搜索算法。它最早由美国密执安大学的Holland教授提出,起源于60年代对自然和人工自适应系统的研究。遗传算法对许多用传统数学难以解决或明显失效的非常复杂问题,特别是最优化问题,GA提供了一个行之有效的新途径。一.遗传算法的发展遗传算法起源于对生物系统所进行的计算机模拟研究。早在20世纪40年代,就有学者开始如何利用计算机进行生物模拟的技术,他们从生物学的角度进行了生物的进化过程模拟、遗传过程模拟等研究工作。进入60年代后,美国密执安大学的Holland教授及其学生们受到这种生物模拟技术的启发,创造出了一种基于生物遗传和进化机制的适合于复杂系统优化计算的自适应概率优化技术——遗传算法。下面是在遗传算法的发展进程中一些关键人物所做出的一些主要贡献。1.J.H.Holland20世纪60年代,Holland认识到了生物的遗传和自然进化现象与人工自适应系统的相似关系,运用生物遗传和进化的思想来研究自然和人工自适应系统的生成以及它们与环境的关系,提出在研究和设计人工自适应系统时,可以借鉴生物遗传的机制,以群体的方法进行自适应搜索,并且充分认识到了交叉、变异等运算策略在自适应系统中的重要性。70年代,Holland教授提出了遗传算法的基本定理——模式定理(SchemaTheorem),从而奠定了遗传算法的理论基础。模式定理揭示出了群体中的优良个体(较好的模式)的样本数将以指数级规律增长,因而从理论上保证了遗传算法是一个可以用来寻找最优可行解的优化过程。1975年,Holland出版了第一本系统论述遗传算法和人工自适应系统的专著《自然系统和人工系统的自适应性(AdaptationinNaturalandArtificialSystems)》。80年代,Holland教授实现了第一个基于遗传算法的机器学习系统——分类器系统(ClassifierSystems,简称CS),开创了基于遗传算法的机器学习的新概念,为分类器系统构造出了一个完整的框架。2.J.D.Bagley1967年,Holland的学生Bagley在其博士论文中首次提出了“遗传算法”一词,并发表了遗传算法应用方面的第一篇论文。他发展了复制、交叉、变异、显性、倒位等遗传算子,在个体编码上使用了双倍体的编码方法。这些都与目前遗传算法中所使用的算子和方法相类似。他还敏锐地意识到了在遗传算法执行的不同阶段可以使用不同的选择率,这将有利于防止遗传算法的早熟现象,从而创立了自适应遗传算法的概念。3.K.A.DeJong1975年,DeJong在其博士论文中结合模式定理进行了大量的纯数值函数优化计算实验,树立了遗传算法的工作框架,得到了一些重要且具有指导意义的结论。例如,对于规模在50~100的群体,经过10~20代的进化,遗传算法都能以很高的概率找到最优或近似最优解。他推荐了在大多数优化问题中都较适用的遗传算法的参数,还建立了著名的DeJong五函数测试平台,定义了评价遗传算法性能的在线指标和离线指标。4.D.J.Goldberg1989年,Goldberg出版了专著《搜索、优化和机器学习中的遗传算法(GeneticAlgorithmsinSearch,OptimizationandMachineLearning)》。该书系统总结了遗传算法的主要研究成果,全面而完整地论述了遗传算法的基本原理及其应用。可以说这本书奠定了现代遗传算法的科学基础,为众多研究和发展遗传算法的学者所瞩目。5.L.Davis1991年,Davis编辑出版了《遗传算法手册(HandbookofGeneticAlgorithms)》一书,书中包括了遗传算法在科学计算、工程技术和社会经济中的大量应用实例。这本书为推广和普及遗传算法的应用起到了重要的指导作用。6.J.R.Koza1992年,Koza将遗传算法应用于计算机程序的优化设计及自动生成,提出了遗传编程(GeneticProgramming,简称GP)的概念。他将一段LISP语言程序作为个体的基因型,把问题的解编码为一棵树,基于遗传和进化的概念,对由数组成的群体进行遗传运算,最终自动生成性能较好的计算机程序。Koza成功地把他提出的遗传编码的方法应用于人工智能、机器学习、符号处理等方面。二.遗传算法的原理和特点遗传算法将生物进化原理引入待优化参数形成的编码串群体中,按着一定的适值函数及一系列遗传操作对各个个体进行筛选,从而