如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
各位老师,大家好!今天我说课的题目是等差数列(一)。下面我讲从以下几个方面进行阐述:首先,我对本教材进行简要分析。说教材本节内容是江苏教育出版社出版的新苏教版必修五第二章第二节第一课时,属于数与代数领域的知识。在此之前,学生已学习了数列的概念,这为过渡到本节的学习起着铺垫作用。本节内容是学生学过的数列的概念的延伸和拓展,又是后续研究数列求和的基础。它是整个第二章《数列》中承上启下作用的核心知识之一。因此,在《数列》这章中,占据关键地位。本节课中等差数列的概念的理解与掌握、等差数列的通项公式的推导及应用是重点,等差数列“等差”特点的理解、把握和应用是难点,等差数列通项公式的灵活运用是关键。基于以上对教材的认识,根据数学课程标准的基本理念,考虑到学生已有认识结构与心理特征,制订如下的教学目标。说目标a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。为突出重点、突破难点、抓住关键,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈设计思路。说教学方法教法选择与教学手段:针对高中生思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。学法指导:在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。最后,我来具体谈一谈本节课的教学过程。说教学过程在分析教材、确定教学目标、合理选择教法与学法的基础上,我预设的教学过程是:本节课的教学过程由(一)复习引入、(二)新课探究、(三)应用举例、(四)归纳小结、(五)布置作业,五个教学环节构成。(一)复习引入:1.从函数观点看,数列可看作是定义域为正整数集N*所对应的一列函数值,从而数列的通项公式也就是相应函数的解析式。通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。2.小明目前会100个单词,他打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92①3.小芳只会5个单词,他决定从今天起每天背5个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25②通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。(二)新课探究1、引入等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。强调:①“从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数;在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an-an-1=d(n≥2)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。1.9,8,7,6,5,4,……;√d=-12.0.70,0.71,0.72,0.73,0.74……;√d=0.013.0,0,0,0,0,0,…….;√d=04.1,2,3,2,3,4,……;×5.1,0,1,0,1,……×其中第一个数列公差0,第三个数列公差=0由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论a4的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。若一等差数列{an}的首项是a1,公差是d,则据其定义可得:a2-a1=d即:a2