第六讲 三角形与四边形讲座.doc
上传人:sy****28 上传时间:2024-09-11 格式:DOC 页数:5 大小:189KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

第六讲 三角形与四边形讲座.doc

第六讲三角形与四边形讲座.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第六讲三角形与四边形讲座一、考点解读1、三角形的边、角关系、等腰三角形和全等三角形的性质和判定2、四边形以及特殊四边形的性质、判定、平移、翻折和旋转3、三角形、四边形的面积二、题型透视题型1、等腰三角形和全等三角形的性质和判定的应用(2011贵阳)如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.题型2、图形的平移、翻折和旋转(1)(2012徐州)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)设BE=x,请用x的代数式表示AM的长。(3)当线段AM最短时,求重叠部分的面积。变式1、(2012广东汕头,23,12分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.变式2.(2011广东汕头9分)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2).(1)问:始终与△AGC相似的三角形有及;[来源:中.考.资.源.网](2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);(3)问:当x为何值时,△AGH是等腰三角形?题型3、相似形比例线段问题(2011武汉10分)(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:.(2)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证MN2=DM·EN.题型4.动点问题(2011上海14分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,sin∠EMP=.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.图1图2备用图变式.(2011四川绵阳14分)已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如图1.(1)若BD是AC的中线,如图2,求EQ\f(BD,CE)的值;(2)若BD是∠ABC的角平分线,如图3,求EQ\f(BD,CE)的值;(3)结合(1)、(2),请你推断EQ\f(BD,CE)的值的取值范围(直接写出结论,不必证明),并探究EQ\f(BD,CE)的值能小于EQ\f(4,3)吗?若能,求出满足条件的D点的位置;若不能,请说明理由.题型5.综合题型(2010浙江温州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BBl∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF上AC交射线BB1于F,G是EF中点,连结DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值;(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.①当t>时,连结C′C,设四边形ACC′A′的面积为S,求S关于t的函数关系式;②当线段A′C′与射线BB,有公共点时,求t的取值范围(