matlab教程5.ppt
上传人:qw****27 上传时间:2024-09-12 格式:PPT 页数:33 大小:72KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

matlab教程5.ppt

matlab教程5.ppt

预览

免费试读已结束,剩余 23 页请下载文档后查看

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第五讲线性代数中的数值计算问题【引例】求下列三阶线性代数方程组的近似解在MATLAB命令窗口,先输入下列命令构造系数矩阵A和右端向量b:A=[2-54;15-2;-124]A=2-5415-2-124b=[5;6;5]b=565然后只需输入命令x=A\b即可求得解x:x=A\bx=2.76741.18601.3488一、特殊矩阵的实现1.零矩阵:所有元素值为零的矩阵称为零矩阵。零矩阵可以用zeros函数实现。zeros是MATLAB内部函数,使用格式如下:zeros(m):产生mm阶零矩阵;zeros(m,n):产生mn阶零矩阵,当m=n时等同于zeros(m);zeros(size(A)):产生与矩阵A同样大小的零矩阵。2.幺矩阵:所有元素值为1的矩阵称为幺矩阵。幺矩阵可以用ones函数实现。它的调用格式与zeros函数一样。【例1】试用ones分别建立32阶幺矩阵、和与前例矩阵A同样大小的幺矩阵。用ones(3,2)建立一个32阶幺阵:ones(3,2)%一个32阶幺阵ans=1111113.单位矩阵:主对角线的元素值为1、其余元素值为0的矩阵称为单位矩阵。它可以用MATLAB内部函数eye建立,使用格式与zeros相同。4.数量矩阵:主对角线的元素值为一常数d、其余元素值为0的矩阵称为数量矩阵。显然,当d=1时,即为单位矩阵,故数量矩阵可以用eye(m)*d或eye(m,n)*d建立。6.用一个向量V构成一个对角阵设V为具有m个元素的向量,diag(V)将产生一个mm阶对角阵,其主对角线的元素值即为向量的元素值;diag(V,k)将产生一个nn(n=m+|k|,k为一整数)阶对角阵,其第k条对角线的元素值即为向量的元素值。注意:当k>0,则该对角线位于主对角线的上方第k条;当k<0,该对角线位于主对角线的下方第|k|条;当k=0,则等同于diag(V)。用diag建立的对角阵必是方阵。v=[1;2;3];%建立一个已知的向量AA=diag(v)A=100020003B=diag(v,1)B=0100002000030000C=diag(v,-1)C=0000100002000037.从矩阵中提取某对角线我们也可以用diag从矩阵中提取某对角线构成一个向量。设A为mn阶矩阵,diag(A)将从矩阵A中提取其主对角线产生一个具有min(m,n)个元素的向量。diag(A,k)的功能是:当k>0,则将从矩阵A中提取位于主对角线的上方第k条对角线构成一个具有n-k个元素的向量;当k<0,则将从矩阵A中提取位于主对角线的下方第|k|条对角线构成一个具有m+k个元素的向量;当k=0,则等同于diag(A)。【例3】已知矩阵A,试从矩阵A分别提取主对角线及它两侧的对角线构成向量B、C和D。MATLAB程序如下:A=[123;456];%建立一个已知的23阶矩阵A%按各种对角线情况构成向量B、C和DB=diag(A)B=15C=diag(A,1)C=26D=diag(A,-1)D=48.上三角阵:使用格式为triu(A)、triu(A,k)设A为mn阶矩阵,triu(A)将从矩阵A中提取主对角线之上的上三角部分构成一个mn阶上三角阵;triu(A,k)将从矩阵A中提取主对角线第|k|条对角线之上的上三角部分构成一个mn阶上三角阵。注意:这里的k与diag(A,k)的用法类似,当k>0,则该对角线位于主对角线的上方第k条;当k<0,该对角线位于主对角线的下方第|k|条;当k=0,则等同于triu(A)【例4】试分别用triu(A)、triu(A,1)和、triu(A,-1)从矩阵A提取相应的上三角部分构成上三角阵B、C和D。MATLAB程序如下:A=[123;456;789;987];%一个已知的43阶矩阵A%构成各种情况的上三角阵B、C和DB=triu(A)B=123056009000C=triu(A,1)D=triu(A,-1)10.空矩阵在MATLAB里,把行数、列数为零的矩阵定义为空矩阵。空矩阵在数学意义上讲是空的,但在MATLAB里确是很有用的。例如A=[0.10.20.3;0.40.50.6];B=find(A>1.0)B=[]这里[]是空矩阵的符号,B=find(A>1.0)表示列出矩阵A中值大于1.0的元素的序号。当不能满足括号中的条件时,返回空矩阵。另外,也可以将空矩阵赋给一个变量,如:B=[]B=[]二、矩阵的特征值与特征向量对于NN阶方阵A,所谓A的特征值问题是:求数λ和N维非零向量x(通常为复数),使之满足下式:A.x=λx则称λ为矩阵A的