2023版高考数学一轮复习第三章导数及其应用3.3利用导数研究函数的极值最值练习理北师大版.doc
上传人:13****51 上传时间:2024-09-10 格式:DOC 页数:9 大小:2.6MB 金币:5 举报 版权申诉
预览加载中,请您耐心等待几秒...

2023版高考数学一轮复习第三章导数及其应用3.3利用导数研究函数的极值最值练习理北师大版.doc

2023版高考数学一轮复习第三章导数及其应用3.3利用导数研究函数的极值最值练习理北师大版.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

5 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

PAGE-9-3.3利用导数研究函数的极值、最值核心考点·精准研析考点一用导数解决函数的极值问题命题精解读1.考什么:(1)考查求值、解方程、解不等式等问题.(2)考查数学运算、直观想象、逻辑推理的核心素养及数形结合、分类与整合等数学思想.2.怎么考:与函数图像、方程、不等式、函数单调性等知识结合考查求函数极值、知函数极值求参数等问题.3.新趋势:函数极值、导数的几何意义及函数图像等知识交汇考查为主学霸好方法1.求函数f(x)极值的一般解题步骤(1)确定函数的定义域;(2)求导数f′(x);(3)解方程f′(x)=0,求出函数定义域内的所有根;(4)列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.2.已知函数极值点或极值求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.由图像判断函数的极值【典例】(2020·咸阳模拟)已知三次函数f(x)=ax3+bx2+cx+d的图像如图所示,则=.【解析】f′(x)=3ax2+2bx+c;根据图像知,x=-1,2是f(x)的两个极值点;所以x=-1,2是方程3ax2+2bx+c=0的两实数根;根据根与系数的关系得,所以2b=-3a,c=-6a,所以===1.答案:1由函数f(x)的图像确定极值点的主要依据是什么?提示:局部最高(低)点的横坐标是极大(小)值点.求已知函数的极值【典例】已知函数f(x)=x-1+(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值.(2)求函数f(x)的极值.【解析】(1)由f(x)=x-1+,得f′(x)=1-.又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=0,即1-=0,解得a=e.(2)f′(x)=1-,当a≤0时,f′(x)>0,f(x)为(-∞,+∞)上的增函数,所以函数f(x)无极值.当a>0时,令f′(x)=0,得ex=a,即x=lna,当x∈(-∞,lna)时,f′(x)<0;当x∈(lna,+∞)时,f′(x)>0,所以f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增,故f(x)在x=lna处取得极小值且极小值为f(lna)=lna,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,f(x)在lna处得极小值lna,无极大值.已知函数极值情况求参数值(范围)【典例】设f(x)=xlnx-ax2+(2a-1)x,a∈R.(1)令g(x)=f′(x),求g(x)的单调区间.(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.【解析】(1)由f′(x)=lnx-2ax+2a,可得g(x)=lnx-2ax+2a,x∈(0,+∞).所以g′(x)=-2a=.当a≤0,x∈(0,+∞)时,g′(x)>0,函数g(x)单调递增;当a>0,x∈时,g′(x)>0,函数g(x)单调递增,x∈时,g′(x)<0,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)的单调增区间为,单调减区间为.(2)由(1)知,f′(1)=0.①当a≤0时,f′(x)在(0,+∞)内单调递增,所以当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当0<a<时,>1,由(1)知f′(x)在内单调递增,可得当x∈(0,1)时,f′(x)<0,当x∈时,f′(x)>0.所以f(x)在(0,1)内单调递减,在内单调递增,所以f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x∈(0,+∞)时,f′(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当x∈时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以f(x)在x=1处取得极大值,符合题意.综上可知,实数a的取值范围为.1.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图像如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(
立即下载