如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一、导数的基本概念(1)平均变化率:函数y=f(x),如果自变量x在xSKIPIF1<0处有增量SKIPIF1<0,那么函数y相应地有增量SKIPIF1<0=f(xSKIPIF1<0+SKIPIF1<0)-f(xSKIPIF1<0),比值SKIPIF1<0叫做函数y=f(x)在xSKIPIF1<0到xSKIPIF1<0+SKIPIF1<0之间的平均变化率,即SKIPIF1<0=SKIPIF1<0(2)瞬时变化率:当SKIPIF1<0时,此时的SKIPIF1<0就叫做瞬时变化率2.导数的定义如果当SKIPIF1<0时,SKIPIF1<0有极限,我们就说函数y=f(x)在点xSKIPIF1<0处可导,并把这个极限叫做f(x)在点xSKIPIF1<0处的导数,记作f′(xSKIPIF1<0)或y′|SKIPIF1<0。即f′(xSKIPIF1<0)=SKIPIF1<0SKIPIF1<0=SKIPIF1<0SKIPIF1<0。说明:(1)函数f(x)在点xSKIPIF1<0处可导,是指SKIPIF1<0时,SKIPIF1<0有极限。如果SKIPIF1<0不存在极限,就说函数在点xSKIPIF1<0处不可导,或说无导数。(2)SKIPIF1<0是自变量x在xSKIPIF1<0处的改变量,SKIPIF1<0时,而SKIPIF1<0是函数值的改变量,可以是零。由导数的定义可知,求函数y=f(x)在点xSKIPIF1<0处的导数的步骤:①求函数的增量SKIPIF1<0=f(xSKIPIF1<0+SKIPIF1<0)-f(xSKIPIF1<0)②求平均变化率SKIPIF1<0=SKIPIF1<0③取极限,得导数f’(xSKIPIF1<0)=SKIPIF1<0例1.SKIPIF1<0在SKIPIF1<0处可导,则SKIPIF1<02SKIPIF1<0-1例2.已知f(x)在x=a处可导,且f′(a)=b,求下列极限:(1)SKIPIF1<0;(2)SKIPIF1<0例3.设f(x)=x|x|,则f′(0)=习题精炼:1.SKIPIF1<0在SKIPIF1<0内的平均变化率为()A.3B.2C.1D.02.设函数SKIPIF1<0,当自变量SKIPIF1<0由SKIPIF1<0改变到SKIPIF1<0时,函数的改变量SKIPIF1<0为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<03.质点运动动规律SKIPIF1<0,则在时间SKIPIF1<0中,相应的平均速度为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0SKIPIF1<0在SKIPIF1<0附近的平均变化率是____5.一直线运动的物体,从时间SKIPIF1<0到SKIPIF1<0时,物体的位移为SKIPIF1<0,那么SKIPIF1<0为()A.从时间SKIPIF1<0到SKIPIF1<0时,物体的平均速度;B.在SKIPIF1<0时刻时该物体的瞬时速度;C.当时间为SKIPIF1<0时物体的速度;D.从时间SKIPIF1<0到SKIPIF1<0时物体的平均速度6.SKIPIF1<0在SKIPIF1<0=1处的导数为()A.2SKIPIF1<0B.2C.SKIPIF1<0D.1函数SKIPIF1<0SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0SKIPIF1<0=.在高台跳水运动中,t秒时运动员相对于水面的高度为SKIPIF1<0,则运动员在1秒时的瞬时速度为,此时运动状态是函数y=f(x)在点xSKIPIF1<0处的导数的几何意义是曲线y=f(x)在点p(xSKIPIF1<0,f(xSKIPIF1<0))处的切线的斜率。也就是说,曲线y=f(x)在点p(xSKIPIF1<0,f(xSKIPIF1<0))处的切线的斜率是f′(xSKIPIF1<0)。相应地,切线方程为y-ySKIPIF1<0=f/(xSKIPIF1<0)(x-xSKIPIF1<