如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
三角形中作辅助线的常用方法举例一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D、E为△ABC内两点,求证:AB+AC>BD+DE+CE.证明:(法一)将DE两边延长分别交AB、AC于M、N,(法二:)如图1-2,延长BD交AC于F,延长CE交BF于G,二、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D为△ABC内的任一点,求证:∠BDC>∠BAC。三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF。四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。例如:如图4-1:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF五、有三角形中线时,常延长加倍中线,构造全等三角形。例如:如图5-1:AD为△ABC的中线,求证:AB+AC>2AD。六、截长补短法作辅助线。例如:已知如图6-1:在△ABC中,AB>AC,∠1=∠2,P为AD上任一点。求证:AB-AC>PB-PC。七、延长已知边构造三角形:例如:如图7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求证:AD=BC八、连接四边形的对角线,把四边形的问题转化成为三角形来解决。例如:如图8-1:AB∥CD,AD∥BC求证:AB=CD。九、有和角平分线垂直的线段时,通常把这条线段延长。例如:如图9-1:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E。求证:BD=2CE十、连接已知点,构造全等三角形。例如:已知:如图10-1;AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。十一、取线段中点构造全等三有形。例如:如图11-1:AB=DC,∠A=∠D求证:∠ABC=∠DCB。练习题:如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。已知:如图1-3,AB=2AC,∠BAD=∠CAD,DA=DB,求证DC⊥AC已知:如图1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求证:AB-AC=CD角分线上点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。如图2-1,已知AB>AD,∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180如图2-2,在△ABC中,∠A=90,AB=AC,∠ABD=∠CBD。求证:BC=AB+AD已知如图2-3,△ABC的角平分线BM、CN相交于点P。求证:∠BAC的平分线也经过点P。练习:1.如图2-4∠AOP=∠BOP=15,PC//OA,PD⊥OA,如果PC=4,则PD=()A4B3C2D12.已知在△ABC中,∠C=90,AD平分∠CAB,CD=1.5,DB=2.5.求AC。3.已知:如图2-5,∠BAC=∠CAD,AB>AD,CE⊥AB,AE=(AB+AD).求证:∠D+∠B=180。4.已知:如图2-6,在正方形ABCD中,E为CD的中点,F为BC上的点,∠FAE=∠DAE。求证:AF=AD+CF。已知:如图2-7,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足为D,AE平分∠CAB交CD于F,过F作FH//AB交BC于H。求证CF=BH。作角平分线的垂线构造等腰三角形已知:如图3-1,∠BAD=∠DAC,AB>AC,CD⊥AD于D,H是BC中点。求证:DH=(AB-AC)已知:如图3-2,AB=AC,∠BAC=90,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。例3.已知:如图3-3在△ABC中,AD、AE分别∠BAC的内、外角平分线,过顶点B作BFAD,交AD的延长线于F,连结FC并延长交AE于M。求证:AM=ME。已知:如图3-4,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延长线于M。求证:AM=(AB+AC)练习:已知:在△ABC中,AB=5,AC=3,D是BC中点,AE是∠BAC的平分线,且CE⊥AE于E,连接DE,求DE。已知BE、BF分别是△ABC的∠A