如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
高中数学讲义圆锥曲线【知识图解】定义标准方程椭圆几何性质定义标准方程圆锥曲线圆锥曲线应用双曲线几何性质定义标准方程抛物线几何性质【方法点拨】解析几何是高中数学的重要内容之一,也是衔接初等数学和高等数学的纽带。而圆锥曲线是解析几何的重要内容,因而成为高考考查的重点。研究圆锥曲线,无外乎抓住其方程和曲线两大特征。它的方程形式具有代数的特性,而它的图像具有典型的几何特性,因此,它是代数与几何的完美结合。高中阶段所学习和研究的圆锥曲线主要包括三类:椭圆、双曲线和抛物线。圆锥曲线问题的基本特点是解题思路比较简单清晰,解题方法的规律性比较强,但是运算过程往往比较复杂,对学生运算能力,恒等变形能力,数形结合能力及综合运用各种数学知识和方法的能力要求较高。1.一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质.2.着力抓好运算关,提高运算与变形的能力,解析几何问题一般涉及的变量多,计算量大,解决问题的思路分析出来以后,往往因为运算不过关导致半途而废,因此要寻求合理的运算方案,探究简化运算的基本途径与方法,并在克服困难的过程中,增强解决复杂问题的信心,提高运算能力.3.突出主体内容,要紧紧围绕解析几何的两大任务来学习:一是根据已知条件求曲线方程,其中待定系数法是重要方法,二是通过方程研究圆锥曲线的性质,往往通过数形结合来体现,应引起重视.4.重视对数学思想如方程思想、函数思想、数形结合思想的归纳提炼,达到优化解题思维、简化解题过程第1课椭圆A【考点导读】1.掌握椭圆的第一定义和几何图形,掌握椭圆的标准方程,会求椭圆的标准方程,掌握椭圆简单的几何性质;2.了解运用曲线方程研究曲线几何性质的思想方法;能运用椭圆的标准方程和几何性质处理一些简单的实际问题.【基础练习】x21.已知△ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的3另外一个焦点在BC边上,则△ABC的周长是______2.椭圆x24y21的离心率为______3.已知椭圆中心在原点,一个焦点为F(-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是______x2y214.已知椭圆1的离心率e,则k的值为______k892【范例导析】35例1.(1)求经过点(,),且9x24y245与椭圆有共同焦点的椭圆方程。22(2)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,点P(3,0)在该椭圆上,求椭圆的方程。【分析】由所给条件求椭圆的标准方程的基本步骤是:①定位,即确定椭圆的焦点在哪轴上;②定量,即根据条件列出基本量a、b、c的方程组,解方程组求得a、b的值;③写出方程.y2x2解:(1)∵椭圆焦点在y轴上,故设椭圆的标准方程为1(ab0),a2b2由椭圆的定义知,3535312a()2(2)2()2(2)21010210,222222∴a10,又∵c2,∴b2a2c21046,y2x2所以,椭圆的标准方程为1。106x2y2(2)方法一:①若焦点在x轴上,设方程为1ab0,a2b29∵点P(3,0)在该椭圆上∴1即a29又a3b,∴b21∴椭圆的方程为a2x2y21.9y2x2②若焦点在y轴上,设方程为1ab0,a2b29∵点P(3,0)在该椭圆上∴1即b29又a3b,∴a281∴椭圆的方程为b2y2x21819方法二:设椭圆方程为Ax2By21A0,B0,AB.∵点P(3,0)在该椭圆上11x2∴9A=1,即A,又a3b∴B1或,a281∴椭圆的方程为y21或9819y2x21.819【点拨】求椭圆标准方程通常采用待定系数法,若焦点在x轴上,设方程为x2y2y2x21ab0,若焦点在y轴上,设方程为1ab0,有时为了a2b2a2b2运算方便,也可设为Ax2By21,其中A0,B0,AB.x2y2例2.点A、B分别是椭圆1长轴的左、右端点,点F是椭圆的右焦点,点P在3620椭圆上,且位于x轴上方,PAPF。(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值。【分析】①列方程组求得P坐标;②解几中的最值问题通常可转化为函数的最值来求解,要注意椭圆上点坐标的范围.解:(1)由已知可得点A