(完整)高二数学导数知识点总结及习题练习(2)-推荐文档.doc
上传人:是你****盟主 上传时间:2024-09-11 格式:DOC 页数:8 大小:185KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

(完整)高二数学导数知识点总结及习题练习(2)-推荐文档.doc

(完整)高二数学导数知识点总结及习题练习(2)-推荐文档.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高三专题复习——导数在解题中常用的有关结论(需要熟记):(1)曲线在处的切线的斜率等于,切线方程为(2)若可导函数在处取得极值,则。反之,不成立。(3)对于可导函数,不等式的解集决定函数的递增(减)区间。(4)函数在区间I上递增(减)的充要条件是:恒成立(5)函数在区间I上不单调等价于在区间I上有极值,则可等价转化为方程在区间I上有实根且为非二重根。(若为二次函数且I=R,则有)。(6)在区间I上无极值等价于在区间在上是单调函数,进而得到或在I上恒成立(7)若,恒成立,则;若,恒成立,则(8)若,使得,则;若,使得,则.(9)设与的定义域的交集为D若D恒成立则有(10)若对、,恒成立,则.若对,,使得,则.若对,,使得,则.(11)已知在区间上的值域为A,,在区间上值域为B,若对,,使得=成立,则。(12)若三次函数f(x)有三个零点,则方程有两个不等实根,且极大值大于0,极小值小于0.(13)证题中常用的不等式:①②③④⑤⑥考点一:导数几何意义:角度一求切线方程1.(2014·洛阳统考)已知函数f(x)=3x+cos2x+sin2x,a=f′eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4))),f′(x)是f(x)的导函数,则过曲线y=x3上一点P(a,b)的切线方程为()A.3x-y-2=0B.4x-3y+1=0C.3x-y-2=0或3x-4y+1=0D.3x-y-2=0或4x-3y+1=0解析:选A由f(x)=3x+cos2x+sin2x得f′(x)=3-2sin2x+2cos2x,则a=f′eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)))=3-2sineq\f(π,2)+2coseq\f(π,2)=1.由y=x3得y′=3x2,过曲线y=x3上一点P(a,b)的切线的斜率k=3a2=3×12=3.又b=a3,则b=1,所以切点P的坐标为(1,1),故过曲线y=x3上的点P的切线方程为y-1=3(x-1),即3x-y-2=0.角度二求切点坐标2.(2013·辽宁五校第二次联考)曲线y=3lnx+x+2在点P0处的切线方程为4x-y-1=0,则点P0的坐标是()A.(0,1)B.(1,-1)C.(1,3)D.(1,0)解析:选C由题意知y′=eq\f(3,x)+1=4,解得x=1,此时4×1-y-1=0,解得y=3,∴点P0的坐标是(1,3).角度三求参数的值3.已知f(x)=lnx,g(x)=eq\f(1,2)x2+mx+eq\f(7,2)(m<0),直线l与函数f(x),g(x)的图像都相切,且与f(x)图像的切点为(1,f(1)),则m等于()A.-1B.-3C.-4D.-2解析:选D∵f′(x)=eq\f(1,x),∴直线l的斜率为k=f′(1)=1,又f(1)=0,∴切线l的方程为y=x-1.g′(x)=x+m,设直线l与g(x)的图像的切点为(x0,y0),则有x0+m=1,y0=x0-1,y0=eq\f(1,2)x+mx0+eq\f(7,2),m<0,于是解得m=-2,故选D.考点二:判断函数单调性,求函数的单调区间。[典例1]已知函数f(x)=x2-ex试判断f(x)的单调性并给予证明.解:f(x)=x2-ex,f(x)在R上单调递减,f′(x)=2x-ex,只要证明f′(x)≤0恒成立即可.设g(x)=f′(x)=2x-ex,则g′(x)=2-ex,当x=ln2时,g′(x)=0,当x∈(-∞,ln2)时,g′(x)>0,当x∈(ln2,+∞)时,g′(x)<0.∴f′(x)max=g(x)max=g(ln2)=2ln2-2<0,∴f′(x)<0恒成立,∴f(x)在R上单调递减.[典例2](2012·北京高考改编)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间.[解](1)f′(x)=2ax,g′(x)=3x2+b,由已知可得eq\b\lc\{\rc\(\a\vs4\al\co1(f1=a+1=c,,g1=1+b=c,,2a=3+b,))解得a=b=3.(2)令F(x)=f(x)+g(x)=x3+ax2+eq\f(a2,4)x+1,F′(x)=3x2+2ax+eq\f(a2,4),令F′(x)=0,得x1=-eq\f(a,2),x2=-eq\f(a,6),∵a>0,∴x1<x2,由F′(x)>0得,x<-e