抽屉原理这节课不同于六年级其他课型.doc
上传人:qw****27 上传时间:2024-09-12 格式:DOC 页数:5 大小:33KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

抽屉原理这节课不同于六年级其他课型.doc

抽屉原理这节课不同于六年级其他课型.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一、抽屉原理这节课不同于六年级其他课型,与前后知识点没有联系,比较孤立。抽屉原理也很抽像,对于师生而言,这节课比较难上。冯老师是通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”的,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,并会用“抽屉原理”加以解决。本节课较好地体现了以下几点:1.激发了学生的学习兴趣,引发了学生的求知欲。游戏导入,激发了学生的学习兴趣,而当老师“知道老师为什么能做出如此准确的判断吗?道理是什么?这种蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。“不但使学生带着兴趣去学习,而且给予学生思维的导向,引发了学生的求知欲,为认知应用抽屉原理作好了铺垫,。”2.借助直观操作经历探究过程。本节课教师组织的教学结构紧凑,实施过程层层推进,上的扎实有效。先用枚举法,让学生把所有情况摆出来,运用直观的方式,发现并描述,理解最简单的“抽屉原理”再让学生探究解决问题的简便方法即“平均分”的方法。在大量的举例后使学生感知理解“小棒比杯子数多1时,不管怎么放,总有一个杯子里至少有2根小棒。”在这节课中,由于老师提供的数据较小,为学生自主探索和理解“抽屉原理”提供了很大的空间特别是教师通过打挑战性的问题:到底是“商加1”还是“商加余数”?引发学生思维步步深入,并通过讨论,操作和说理活动,使学生经历了一个初步的“数学证明”过程,培养了学生推理能力和初步的逻辑思维能力。3.在活动中使学生感受到了数学魅力。“抽屉原理”的建立是学生在观察、操作思考、推理的基础上理解和发现的,学生学的积极主动。老师上的比较扎实,是一节好课。陈老师上出的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。优点:1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝筷子放入3个杯子中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。3、注意渗透数学和生活的联系。并在游戏中深化知识。学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。课前老师设计了一组简单、真实的生活情境:“让一名学生在一副去掉了大小王和花牌的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。”学完抽屉原理后,让学生用学过的知识来解释这些现象,有效的渗透“数学来源于生活,又还原于生活”的理念。商榷之处:学生对“至少”一词的理解还显得有些欠缺,学生仅仅理解了字面上的意思,对“至少”一词的指向性还不明确,就我理解,“至少”应该是指的在每一种情况中出现的最大数中的最小数,而有学生却理解成是每一种情况中的最小数。如何让学生的理解更准确,更深刻,还需探究。高老师上的《抽屉原理》这一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。本节课的亮点是:1、充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝筷子放入3个杯子中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师