如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
整式的乘法教案整式的乘法教案作为一名教师,就不得不需要编写教案,教案是教学活动的依据,有着重要的地位。优秀的教案都具备一些什么特点呢?下面是小编收集整理的整式的乘法教案,欢迎大家借鉴与参考,希望对大家有所帮助。整式的乘法教案1学习目标:理解多项式乘法法则,会利用法则进行简单的多项式乘法运算。学习重点:多项式乘法法则及其应用。学习难点:理解运算法则及其探索过程。一、课前训练:(1)-3a2b+2b2+3a2b-14b2=,(2)-=;(3)3a2b2ab3=,(4)=;(5)-=,(6)=。二、探索练习:(1)如图1大长方形,其面积用四个小长方形面积表示为:;(2)大长方形的长为,宽为,要计算其面积就是,其中包含的运算为。由上面的问题可发现:()()=多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的以另一个多项式的每一项,再把所得的积。三.运用法则规范解题。四.巩固练习:3.计算:①,4.计算:五.提高拓展练习:5.若求m,n的值.6.已知的结果中不含项和项,求m,n的值.7.计算(a+b+c)(c+d+e),你有什么发现?六.晚间训练:(7)2a2(-a)4+2a45a2(8)3、(1)观察:4×6=2414×16=22424×26=62434×36=1224你发现其中的规律吗?你能用代数式表示这一规律吗?(2)利用(1)中的.规律计算124×126。4、如图,AB=,P是线段AB上一点,分别以AP,BP为边作正方形。(1)设AP=,求两个正方形的面积之和S;(2)当AP分别时,比较S的大小。整式的乘法教案2一、内容和内容解析1、内容:同底数幂的乘法。2、内容解析同底数幂的乘法是幂的一种运算,在整式乘法中具有基础地位。在整式的乘法中,多项式的乘法要转化为单项式的乘法,单项式的乘法要转化为幂的运算,而幂的运算以同底数幂的乘法为基础。同底数幂的乘法将同底数幂的乘法运算转化为指数的加法运算,其中底数a可以是具体的数、单项式、多项式、分式乃至任何代数式。同底数幂的乘法是类比数的乘方来学习的,首先在具体例子的基础上抽象出同底数幂的乘法的性质,进而通过推理加以推导,这一过程蕴含数式通性、从具体到抽象的思想方法。基于以上分析,确定本节课的教学重点:同底数幂的乘法的运算性质。二、目标和目标解析1、目标(1)理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算。(2)体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用。2、目标解析达成目标(1)的标志是:学生能根据乘方的意义推导出同底数幂乘法的性质,会用符号语言和文字语言表述这一性质,会用性质进行同底数幂的乘法运算。达成目标(2)的标志学生发现和推导同底数幂的乘法的运算性质,会用符号语言,文字语言表述这一性质,能认识到具体例子在发现结论的过程中所起的作用,能体会到数式通性在推到结论的过程中的重要作用。三、教学问题诊断分析在前面的学习中,学生已经学习了用字母表示数以及整式的加减运算,但是用字母表示幂以及幂的运算还是初次接触。幂的运算抽象程度较高,不易理解,特别对于am+n的指数的理解,因为它不仅抽象程度较高,而且运算结果反映在指数上,学生第一次接触,也很难理解。教学时,应引导学生回顾乘方的意义,从数式通性的角度理解字母表示的幂的意义,进而明确同底数幂乘法的运算性质。本节课的教学难点是:同底数幂的运算性质的理解与推导。四、教学过程设计1、创设情境,提出问题问题1:一种电子计算机每秒可进行1014次运算,它工作103秒可进行多少次运算?回顾与思考:什么叫乘方?an表示的意义是什么?其中a、n、an分别叫什么?师生活动:教师提出复习问题,学生主动思考并回答问题,并尝试用学过的知识解决问题。设计意图:从实际问题导入,让学生动手试一试,主动探索,在自己的实践中感受学习同底数幂的乘法的必要性,并通过有步骤、有依据的计算,为探索同底数幂的乘法的运算性质做好知识和方法的铺垫,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的,学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习。2、探索新知问题2根据乘方的意义填空:25×22=()×()=_____________=2()a3×a2=()×()=______________=a()5m×5n=()×()=______________=5()(1)探一探观察几个式子左右两边底数、指数有什么变化?(2)说一说根据上面式子的计算结果,你能发现有什么规律吗?小组交流一下想法。(3)猜一猜am×an=?(m、n是正整数)师生活动:学生独立思考,然后小组交流思考结果。设计意图:从引例到“推一推”、“说一说”、“猜一猜”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步又有层次地进行概括抽象的`过程。在这一过程中,要留给学生探索与交流