高三数学一轮复习精练:立体几何2.doc
上传人:sy****28 上传时间:2024-09-14 格式:DOC 页数:8 大小:1.8MB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

高三数学一轮复习精练:立体几何2.doc

高三数学一轮复习精练:立体几何2.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

中报网精品资料知识改变命运教育开创未来,故,所以两点的球面距离为,故选择B。w.w.w.k.s.5.u.c.o.m解析2:过球心作平面的垂线交平面与,,则在直线上,由于,,所以,由为等腰直角三角形可得,所以为等边三角形,则两点的球面距离是。12.【答案】:C【解析】:设底面边长为1,侧棱长为,过作。在中,,由三角形面积关系得w.w.w.k.s.5.u.c.o.m设在正四棱柱中,由于,所以平面,于是,所以平面,故为点到平面的距离,在中,又由三角形面积关系得于是,于是当,所以,所以二、填空题(4题,每题5分)13.【答案】:【解析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时,,随着F点到C点时,因平面,即有,对于,又,因此有,则有,因此的取值范围是w.w.w.k.s.5.u.c.o.m14.【答案】(0,-1,0)w.w.w.k.s.5.u.c.o.m【解析】设由可得故15.【答案】:。【考点定位】本小题考查异面直线的夹角,基础题。【解析】:不妨设棱长为2,选择基向量,则w.w.w.k.s.5.u.c.o.m,故填写。法2:取BC中点N,连结,则面,∴是在面上的射影,由几何知识知,由三垂线定理得,故填写。16.【答案】【解析】,,同理:,即R1=,R2=,R3=,由得三.解答题(6题,共70分)17.证明:(I)如图,连结OP,以O为坐标原点,分别以OB、OC、OP所在直线为轴,轴,轴,建立空间直角坐标系O,w.w.w.k.s.5.u.c.o.m则,由题意得,因,因此平面BOE的法向量为,得,又直线不在平面内,因此有平面(II)设点M的坐标为,则,因为平面BOE,所以有,因此有,即点M的坐标为,在平面直角坐标系中,的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在内存在一点,使平面,由点M的坐标得点到,的距离为.w.w.w.k.s.5.u.c.o.m18.【解法1】本题主要考查直线和平面垂直、平面与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力.(Ⅰ)∵四边形ABCD是正方形,∴AC⊥BD,∵,∴PD⊥AC,∴AC⊥平面PDB,∴平面.(Ⅱ)设AC∩BD=O,连接OE,由(Ⅰ)知AC⊥平面PDB于O,∴∠AEO为AE与平面PDB所的角,∴O,E分别为DB、PB的中点,∴OE//PD,,又∵,∴OE⊥底面ABCD,OE⊥AO,在Rt△AOE中,,∴,即AE与平面PDB所成的角的大小为.【解法2】如图,以D为原点建立空间直角坐标系,设则,(Ⅰ)∵,∴,∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,∴平面.(Ⅱ)当且E为PB的中点时,,设AC∩BD=O,连接OE,由(Ⅰ)知AC⊥平面PDB于O,∴∠AEO为AE与平面PDB所的角,∵,∴,∴,即AE与平面PDB所成的角的大小为.19.【解法1】本题主要考查直线和平面垂直、直线与平面所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.又,∴AC⊥BC.∴BC⊥平面PAC.(Ⅱ)∵D为PB的中点,DE//BC,∴,又由(Ⅰ)知,BC⊥平面PAC,w.w.w.k.s.5.u.c.o.m∴DE⊥平面PAC,垂足为点E.∴∠DAE是AD与平面PAC所成的角,∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,∴△ABP为等腰直角三角形,∴,∴在Rt△ABC中,,∴.∴在Rt△ADE中,,∴与平面所成的角的大小.(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,∴∠AEP为二面角的平面角,∵PA⊥底面ABC,∴PA⊥AC,∴.∴在棱PC上存在一点E,使得AE⊥PC,这时,故存在点E使得二面角是直二面角.【解法2】如图,以A为原煤点建立空间直角坐标系,设,由已知可得.(Ⅰ)∵,∴,∴BC⊥AP.又∵,∴BC⊥AC,∴BC⊥平面PAC.(Ⅱ)∵D为PB的中点,DE//BC,∴E为PC的中点,∴,∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足为点E.∴∠DAE是AD与平面PAC所成的角,∵,∴.∴与平面所成的角的大小.w.w.w.k.s.5.u.c.o.m(Ⅲ)同解法1.20.解:方法(一):(1)证:依题设,M在以BD为直径的球面上,则BM⊥PD.因为PA⊥平面ABCD,则PA⊥AB,又AB⊥AD,所以AB⊥平面PAD,则AB⊥PD,因此有PD⊥平面ABM,所以平面ABM⊥平面PCD.(2)设平面ABM与PC