2023届福建省晋江市子江中学高一数学第一学期期末考试试题含解析.doc
上传人:猫巷****志敏 上传时间:2024-09-11 格式:DOC 页数:13 大小:1.6MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2023届福建省晋江市子江中学高一数学第一学期期末考试试题含解析.doc

2023届福建省晋江市子江中学高一数学第一学期期末考试试题含解析.doc

预览

免费试读已结束,剩余 3 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,则函数的零点个数为()A.2个B.3个C.4个D.5个2.已知全集,,则()A.B.C.D.3.已知直线:,:,:,若且,则的值为A.B.10C.D.24.关于的不等式的解集为,,,则关于的不等式的解集为()A.B.C.D.5.设平面向量,则A.B.C.D.6.设,,则A.B.C.D.7.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天8.如图,是全集,是子集,则阴影部分表示的集合是()A.B.C.D.9.已知集合,,若,则A.B.C.D.10.若角,均为锐角,,,则()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,,若对任意,存在,使得,则实数的取值范围是__________12.函数恒过定点为__________13.若命题“是假命题”,则实数的取值范围是___________.14.已知平面向量,,,,,则的值是______15.已知,,则______.16.过点,的直线的倾斜角为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数(1)求函数的解析式并判断函数的单调性(无需证明过程);(2)解不等式18.已知四棱锥P-ABCD的体积为,其三视图如图所示,其中正视图为等腰三角形,侧视图为直角三角形,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P-ABCD的侧面积.19.已知不过第二象限的直线l:ax-y-4=0与圆x2+(y-1)2=5相切(1)求直线l的方程;(2)若直线l1过点(3,-1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程20.已知函数.(1)求函数振幅、最小正周期、初相;(2)用“五点法”画出函数在上的图象21.国际上常用恩格尔系数r来衡量一个国家或地区的人民生活水平.根据恩格尔系数的大小,可将各个国家或地区的生活水平依次划分为:贫困,温饱,小康,富裕,最富裕等五个级别,其划分标准如下表:级别贫困温饱小康富裕最富裕标准r>60%50%<r≤60%40%<r=50%30%<r≤40%r≤30%某地区每年底计算一次恩格尔系数,已知该地区2000年底的恩格尔系数为60%.统计资料表明:该地区食物支出金额年平均增长4%,总支出金额年平均增长.根据上述材料,回答以下问题.(1)该地区在2010年底是否已经达到小康水平,说明理由;(2)最快到哪一年底,该地区达到富裕水平?参考数据:,,,参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】函数h(x)=f(x)﹣log4x的零点个数⇔函数f(x)与函数y=log4x的图象交点个数.画出函数f(x)与函数y=log4x的图象(如上图),其中=的图像可以看出来,当x增加个单位,函数值变为原来的一半,即往右移个单位,函数值变为原来的一半;依次类推;根据图象可得函数f(x)与函数y=log4x的图象交点为5个∴函数h(x)=f(x)﹣log4x的零点个数为5个.故选D2、C【解析】根据补集的定义可得结果.【详解】因为全集,,所以根据补集的定义得,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解3、C【解析】由且,列出方程,求得,,解得的值,即可求解【详解】由题意,直线:,:,:,因为且,所以,且,解得,,所以故选C【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的位置关系,列出方程求解的值是解答的