数学黑洞定义及实例.docx
上传人:爱欢****23 上传时间:2024-09-12 格式:DOCX 页数:6 大小:13KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

数学黑洞定义及实例.docx

数学黑洞定义及实例.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数学黑洞定义及实例实例:123数学黑洞123数学黑洞,即西西弗斯串。西西弗斯串可以用几个函数表达它,我们称它为西西弗斯级数,表达式如下:#FormatImgID_0##FormatImgID_1##FormatImgID_2#F是一级原函数,k级通项式为它的迭代循环#FormatImgID_3#它的vba程序代码详细底部目录数学黑洞设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,例如:1234567890,偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有5个。奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有5个。总:数出该数数字的总个数,本例中为10个。新数:将答案按“偶-奇-总”的位序,排出得到新数为:5510。重复:将新数5510按以上算法重复运算,可得到新数:134。重复:将新数134按以上算法重复运算,可得到新数:123。结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123。换言之,任何数的最终结果都无法逃逸123黑洞。为什么有数学黑洞“西西弗斯串”呢?(1)当是一个一位数时,如是奇数,则k=0,n=1,m=1,组成新数011,有k=1,n=2,m=3,得到新数123;如是偶数,则k=1,n=0,m=1,组成新数101,又有k=1,n=2,m=3,得到123。(2)当是一个两位数时,如是一奇一偶,则k=1,n=1,m=2,组成新数112,则k=1,n=2,m=3,得到123;如是两个奇数,则k=0,n=2,m=2,组成022,则k=3,n=0,m=3,得303,则k=1,n=2,m=3,也得123;如是两个偶数,则k=2,n=0,m=2,得202,则k=3,n=0,m=3,由前面亦得123。(3)当是一个三位数时,如三位数是三个偶数字组成,则k=3,n=0,m=3,得303,则k=1,n=2,m=3,得123;如是三个奇数,则k=0,n=3,m=3,得033,则k=1,n=2,m=3,得123;如是两偶一奇,则k=2,n=1,m=3,得213,则k=1,n=2,m=3,得123;如是一偶两奇,则k=1,n=2,m=3,立即可得123。(4)当是一个M(M>3)位数时,则这个数由M个数字组成,其中N个奇数数字,K个偶数数字,M=N+K。由KNM联接生产一个新数,这个新数的位数要比原数小。重复以上步骤,一定可得一个三位新数knm。以上仅是对这一现象产生的原因,简要地进行分析,若采取具体的数学证明,演绎推理步骤还相当繁琐和不易。直到2010年5月18日,关于“123数学黑洞(西西弗斯串)”现象才由中国回族学者秋屏先生于作出严格的数学证明,并推广到六个类似的数学黑洞(“123”、“213”、“312”、“321”、“132”和“231”),这是他的论文:《“西西弗斯串(数学黑洞)”现象与其证明》(正文网址在该词条最下面的“参考资料”中,可点击阅读)。自此,这一令人百思不解的数学之谜已被彻底解决。此前,美国宾夕法尼亚大学数学教授米歇尔·埃克先生仅仅对这一现象作过描述介绍,却未能给出令人满意的解答和证明。6174数学黑洞(即卡普雷卡尔(Kaprekar)常数)比123黑洞更为引人关注的是6174黑洞值,它的算法如下:取任意一个4位数(4个数字均为同一个数的,以及三个数字相同,另外一个数与这个数相差1,如1112,,6566等除外),将该数的4个数字重新组合,形成可能的最大数和可能的最小数,再将两者之间的差求出来;对此差值重复同样过程,最后你总是至达卡普雷卡尔黑洞6174,到达这个黑洞最多需要14个步骤。例如:大数:取这4个数字能构成的最大数,本例为:4321;小数:取这4个数字能构成的最小数,本例为:1234;差:求出大数与小数之差,本例为:4321-1234=3087;重复:对新数3087按以上算法求得新数为:8730-0378=8352;重复:对新数8352按以上算法求得新数为:8532-2358=6174;结论:对任何只要不是4位数字全相同的4位数,按上述算法,不超过9次计算,最终结果都无法逃出6174黑洞;比起123黑洞来,6174黑洞对首个设定的数值有所限制,但是,从实战的意义上来考虑,6174黑洞在信息战中的运用更具有应用意义。设4位数为XYZM,则X-Y=1;Y-Z=2;Z-M=3;时,永远出现6174,因为123黑洞是原始黑洞,所以……自幂数除了0和1自然数中各位数字的立方之和与其本身相等的只有153、370、371和407(此四个数称为“水仙花数”)。例如为使153成为黑洞,我们开始时取任意一个可被3整除的正整数。分别将其各位数字的立方求出,将这些立