如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
最新解方程(实用13篇)在学习中,总结可以帮助我们巩固知识点并形成系统性的学习成果。合理运用归纳和概括的方法,将复杂的信息简洁地呈现出来。通过阅读范文,可以了解到不同领域总结的方式和技巧。解方程篇一活动内容:关于方程教学中的一些问题。1.方程如何进行验算,本组教师之间相互达成一致。2.对未知数在方程中的减数的位置和除数的位置中出现的情况,是否要进行一定的教学辅导。因为教材中的解方程是用等式的性质来完成的而不是应用三者关系来解的,因此教材中不出现未知数在减数的位置和除数的位置上的方程。但是在实际问题解决的时候,学生根据等量关系就会出现这样的方程,那就不会解了。我们认为虽然教材中对这种情况是避免的,但是我们在教学时还是适当进行补充教学。利用三者关系解这一类的方程,或者仍然运用等式的性质,化系数为1,进行教学。3.在列方程解决实际问题的教学中,重视对实际问题中等量关系的寻找,这是列方程解的关键。学生找的等量关系要与所列的方程相一致。4.相关习题的设计:找等量关系练习。1.黑兔的只数是白兔只数的5倍。2.电视塔的高度比居民楼的30倍多5米。3.松树的棵数比柏树的棵数的4倍少8棵。4.科技书的本数比故事书的3倍少24本。5.买苹果花了6.7元,找回3.3元。6.60元买了15个皮球。处理的时候还可以分一些层次。先是根据叙述找到等量关系。再给出已知量和问题,要学生说说根据这个等量关系,用什么方法解比较方便。以“科技书的本数比故事书的3倍少24本。”为例;等量关系为:故事书的本数×3-24=科技书的本数。如果已知故事书的本数,那就直接可以利用等量关系式求出科技书的本数。如果已知的是科技书的本数,那么等量关系式中故事书的本数就是未知数,就要设这个未知数为x进行列方程解比较简便。通过这样的练习能够让一部分学生体验到列方程解的好处。从五年级解方程谈“瞻前顾后”大家都知道,知识是有层次性的,新知识必然以旧知识为基础,正所谓“温故而知新”,旧知识学好了,必然有利于新知识的学习,打好基础是很重要的。老师们都懂得在学习新知识前要了解学生以前学习了哪些相关的基础知识,这样才能根据学生的知识基础进行新知识的教学。但是你有没有想到,你现在教给学生的新知识,也将成为学生以后学习的知识基础,那我们做到“瞻前”了,是不是也需要“顾后”呢!还是以上面的五年级的方程为例,很多老师觉得孩子对第一种方法容易理解,解起方程来正确率也高,再加上老师们在教学中也习惯了第一种解方程的方法,所以有些老师以为不必拘泥于教材,就仍然用第一种方法来教学生解方程,而且学生出错很少,考试成绩也不错。那学生考试成绩高了是否就可以认为教学是成功的呢?答案显然是否定的!小学五年级不是教学的终点,而是学生漫长学习生涯中的一个阶段,这就像马拉松,你在某一段路上的加速并不说明你的最后成绩,反而也许是你耗尽体力打乱生理规律的罪魁祸首。五年级的方程是孩子学习方程的起点,打好基础对孩子以后用方程解决数学问题至关重要,而学生现在学习的解方程的方法,不能仅仅以求出方程的解为唯一目的,重要的是让学生一开始接触就了解方程的基本性质,利用方程的基本性质来解方程,这样的方法才是普遍的规律性的东西,即使学生到了中学,这也是正确有效的方法,因为它是本质性的东西。而前面说的第一种方法显然具有很大的局限性,能够解决小学阶段的大多数问题,却与以后学生要学习的东西没有多少内在联系,而且到了中学这种方法在很多时候已经不能继续使用,这势必使学生要么对新的方法有所抵触,要么对以前的方法产生怀疑,不利于知识的衔接。虽说教师不能拘泥于教材,但是首先你要了解教材编写的意图,教材设计如果不尽合理,教师可以灵活变通,但在对教材不熟悉的情况下随意改变教学内容和方法,是不恰当的。解方程的问题就是一个例子。只有瞻前顾后,既了解所教知识的起点,又要清楚所教知识的发展,承上启下,有机联系,使学生对知识的掌握具有连贯性和可持续性,才是成功的教学,才是真正为学生将来负责的教学。解方程篇二四年级(下册)用字母表示数教学含有字母的式子,学生初步学会了写式子的方法。五年级(下册)方程教学了方程的意义、用等式的性质解一步计算的方程,学生能够列方程解答简单的实际问题。本单元继续教学方程,要解类似于axb=c、axbx=c的方程,并用于解决稍复杂的实际问题。教学内容的编排有以下特点。第一,把解方程和列方程解决实际问题的教学融为一体,同步进行,这是和以前教材的不同编排。在例1里,解2x-22=64这个方程是新知识,用它解答实际问题也是新知识。在例2里,解方程x+3x=290是新授内容,解决的实际问题也是新授内容。这两道例题,既教学解方程的思路与方法,又教学列方程的相等关系和技巧。这样编排,能较好地体现数学内容和现实生活