2021-2022学年新教材高中数学 第十三章 立体几何初步 13.doc
上传人:曾琪****是我 上传时间:2024-09-12 格式:DOC 页数:7 大小:236KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2021-2022学年新教材高中数学 第十三章 立体几何初步 13.doc

2021-2022学年新教材高中数学第十三章立体几何初步13.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

课后素养落实(三十二)两平面平行(建议用时:40分钟)一、选择题1.下列命题中正确的是()A.平面α内有无数个点到平面β的距离相等,则α∥βB.α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥βC.平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥βD.平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥βC[由面面平行的定义、性质得C正确.]2.若平面α∥平面β,且α,β间的距离为d,则在平面β内,下列说法正确的是()①有且只有一条直线与平面α的距离为d;②所有直线与平面α的距离都等于d;③有无数条直线与平面α的距离等于d;④所有直线与平面α的距离都不等于d.A.①③B.②③C.②④D.①④B[由两平行平面间的距离可知,②③正确.]3.已知夹在两平行平面α,β之间的线段AB的长为6,AB与α所成的角为60°,则α与β之间的距离为()A.2B.3C.2eq\r(3)D.3eq\r(3)D[过B作BC⊥α于C(图略),则∠BAC=60°,在Rt△ABC中,BC=AB·sin60°=3eq\r(3).]4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为()A.2B.3C.4D.5C[取CD的中点H,连接EH,FH(图略).在正四面体CDEF中,由于CD⊥EH,CD⊥HF,所以CD⊥平面EFH,所以AB⊥平面EFH,则平面EFH与正方体的左右两侧面平行,则EF也与之平行,与其余四个平面相交.]5.已知平面α∥β∥γ,两条相交直线l,m分别与平面α,β,γ相交于点A,B,C和D,E,F,已知AB=6,eq\f(DE,DF)=eq\f(2,5),则AC=()A.12B.15C.18D.21B[∵α∥β∥γ,∴eq\f(AB,BC)=eq\f(DE,EF).由eq\f(DE,DF)=eq\f(2,5),得eq\f(DE,EF)=eq\f(2,3),即eq\f(AB,BC)=eq\f(2,3),而AB=6,∴BC=9,∴AC=AB+BC=15.]二、填空题6.如图,AE⊥平面α,垂足为E,BF⊥α,垂足为F,l⊂α,C,D∈α,AC⊥l,则当BD与l________时,平面ACE∥平面BFD.垂直[l⊥平面ACE,故需l⊥平面BFD.]7.如图所示,在正方体ABCD­A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.M∈线段FH[∵HN∥BD,HF∥DD1,HN∩HF=H,BD∩DD1=D,∴平面NHF∥平面B1BDD1,故线段FH上任意点M与N连接,有MN∥平面B1BDD1.]8.平面α过正方体ABCD­A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为________.eq\f(\r(3),2)[设平面CB1D1∩平面ABCD=m1.∵平面α∥平面CB1D1,∴m1∥m.又平面ABCD∥平面A1B1C1D1,且平面CB1D1∩平面A1B1C1D1=B1D1,∴B1D1∥m1,∴B1D1∥m.∵平面ABB1A1∥平面DCC1D1,且平面CB1D1∩平面DCC1D1=CD1,同理可证CD1∥n.因此直线m与n所成的角即直线B1D1与CD1所成的角.在正方体ABCD­A1B1C1D1中,△CB1D1是正三角形,故直线B1D1与CD1所成角为60°,其正弦值为eq\f(\r(3),2).]三、解答题9.如图所示,B为△ACD所在平面外一点,M,N,G分别为△ABC,△ABD,△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ACD.[解](1)证明:连接BM,BN,BG并延长交AC,AD,CD分别于点P,F,H.∵M,N,G分别为△ABC,△ABD,△BCD的重心,∴eq\f(BM,MP)=eq\f(BN,NF)=eq\f(BG,GH)=2.连接PF,FH,PH,有MN∥PF.又PF⊂平面ACD,MN⊄平面ACD.∴MN∥平面ACD.同理MG∥平面ACD.又MG∩MN=M,∴平面MNG∥平面ACD.(2)由(1)可知eq\f(MG,PH)=eq\f(BG,BH)=eq\f(2,3),∴MG=eq\f(2,3)PH.又
立即下载