2021-2022学年新教材高中数学 课后素养落实(三十五)第八章 立体几何初步 8.doc
上传人:宜欣****外呢 上传时间:2024-09-12 格式:DOC 页数:7 大小:274KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2021-2022学年新教材高中数学 课后素养落实(三十五)第八章 立体几何初步 8.doc

2021-2022学年新教材高中数学课后素养落实(三十五)第八章立体几何初步8.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

课后素养落实(三十五)平面与平面垂直的性质(建议用时:40分钟)一、选择题1.设平面α⊥平面β,在平面α内的一条直线a垂直于平面β内的一条直线b,则()A.直线a必垂直于平面βB.直线b必垂直于平面αC.直线a不一定垂直于平面βD.过a的平面与过b的平面垂直C[当b=α∩β时,必有a⊥β;当b不是α与β的交线时,直线a不一定垂直于平面β.]2.若平面α⊥平面β,平面β⊥平面γ,则()A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能D[两个平面都垂直于同一个平面,则这两个平面可能平行,也可能相交,故A,B,C都有可能.]3.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是()A.8B.12C.16D.18C[如图,根据正六边形的性质可知,以四边形A1ABB1,A1AFF1,A1ACC1和A1AEE1为底面矩形,各有4个阳马,故共有4×4=16(个)阳马.故选C.]4.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥mB.AC⊥mC.AB∥βD.AC⊥βD[如图,AB∥l∥m,AC⊥l,m∥α⇒AC⊥m,AB∥l⇒AB∥β.故选D.]5.在正三角形ABC中,AD⊥BC于点D,沿AD折成二面角B­AD­C后,BC=eq\f(1,2)AB,这时二面角B­AD­C的大小为()A.60°B.90°C.45°D.120°A[∠BDC为二面角B­AD­C的平面角,设正三角形ABC的边长为m,则折叠后,BC=eq\f(1,2)m,BD=DC=eq\f(1,2)m,所以∠BDC=60°.]二、填空题6.已知α,β是两个不同的平面,l是平面α与β之外的直线,给出下列三个论断:①l⊥α,②l∥β,③α⊥β.以其中的两个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题:________.(用序号表示)①②⇒③(答案不唯一)[由l∥β可在平面β内作l′∥l,又l⊥α,∴l′⊥α,∵l′⊂β,∴α⊥β,故①②⇒③.]7.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC=1,将△ABC沿斜线BC上的高AD折叠,使平面ABD⊥平面ACD,则BC=________.1[因为AD⊥BC,所以AD⊥BD,AD⊥CD,所以∠BDC是二面角B­AD­C的平面角,因为平面ABD⊥平面ACD,所以∠BDC=90°.在△BCD中∠BDC=90°,又AB=AC=1,所以BD=CD=eq\f(\r(2),2),所以BC=eq\r(BD2+CD2)=1.]8.空间四边形ABCD中,平面ABD⊥平面BCD,∠BAD=90°,且AB=AD,则AD与平面BCD所成的角是________.45°[如图,过A作AO⊥BD于O点,∵平面ABD⊥平面BCD,∴AO⊥平面BCD,则∠ADO即为AD与平面BCD所成的角.∵∠BAD=90°,AB=AD.∴∠ADO=45°.]三、解答题9.如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.求证:平面AEC⊥平面AFC.[证明]如图,连接BD,设BD交AC于点G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1,由∠ABC=120°,可得AG=GC=eq\r(3).由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=eq\r(3),且EG⊥AC.在Rt△EBG中,BE=eq\r(EG2-BG2)=eq\r(2),故DF=eq\f(\r(2),2).在Rt△FDG中,FG=eq\r(DF2+DG2)=eq\f(\r(6),2).在直角梯形BDFE中,由BD=2,BE=eq\r(2),DF=eq\f(\r(2),2),可得EF=eq\f(3\r(2),2).因为EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,所以EG⊥平面AFC.又EG⊂平面AEC,所以平面AEC⊥平面AFC.10.如图,菱形ABCD的边长为6,∠BAD=60°,对角线AC,BD相交于点O,将菱形ABCD沿对角线AC折起,得到三棱锥B­ACD,点M是棱BC的中点,DM=3eq\r(2).求证:(1)OM∥平面ABD;(2)平面ABC⊥平面MDO.[证明](1)由题意知,
立即下载