如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
神经网络——浅尝神经网络浅尝神经网络基础知识医学:疾病识别图像:识别、去噪、增强、配准、融合金融:股票和有价证券的预测分析、资本收益的预测和分析、风险管理、信用评估等等神经网络结构图树突神经元结构模型传递函数神经网络的互连模式有反馈的前向神经网络:层内有互相结合的前向网络:相互结合型网络:BP神经网络输入层输入层输入层思路:1、触角长和翼长作为输入信息,分别记为x1,x2。目标输出:(0,1)、(1,0)。Af类记为(1,0),Apf类记为(0,1)。输入层权值求法:向后传播法理想输出Af类(1,0),Apf类(0,1)记为{Tis}则有误差:传递函数(激活函数)logsig(S型函数):图形如下:tansig(双曲正切S型传递函数):newff创建一个BP网络,其调用格式为:train用于对神经网络进行训练。调用格式为:[net,tr,Y,E,Pf,Af]=train(NET,P,T,Pi,Ai)其中,NET:待训练的神经网络;P:网络的输入信号;T:网络的目标,默认值为0;Pi:初始的输入延迟,默认为0;Ai:初始的层次延迟,默认为0;net:函数返回值,训练后的神经网络;tr:函数返回值,训练记录(包括步数和性能);Y:函数返回值,神经网络的输出信号;E:函数返回值,神经网络的误差;Pf:函数返回值,最终输入延迟;Af:函数返回值,最终层延迟。神经网络仿真函数sim调用格式为:[Y,Pf,Af,E,perf]=sim(net,P,Pi,Ai,T)其中,Y:函数返回值,网络输出;Pf:函数返回值,最终输出延迟;Af:函数返回值,最终的层延迟;E:函数返回值,网络误差;perf:函数返回值,网络性能;net:待仿真的神经网络;P:网络输入;Pi:初始输入延迟,默认为0;Ai:初始的层延迟,默认为0;T:网络目标,默认为0.clearp1=[1.24,1.27;1.36,1.74;1.38,1.64;1.38,1.82;1.38,1.90;1.40,1.70;1.48,1.82;1.54,1.82;1.56,2.08];p2=[1.14,1.82;1.18,1.96;1.20,1.86;1.26,2.001.28,2.00;1.30,1.96];p=[p1;p2]';pr=minmax(p);goal=[ones(1,9),zeros(1,6);zeros(1,9),ones(1,6)];plot(p1(:,1),p1(:,2),'h',p2(:,1),p2(:,2),'o')net=newff(pr,[3,2],{'logsig','logsig'});net=train(net,p,goal);x=[1.241.80;1.281.84;1.402.04]';y0=sim(net,p)y=sim(net,x)Thanks!