如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
3.1空间中向量的概念和运算课前自主学案1.空间向量(1)空间向量的定义在空间,把具有______和______的量叫作空间向量,向量的_______叫作向量的长度或模.长度1.空间两向量的加减法与平面内两向量的加减法完全一样吗?提示:一样.因为空间中任意两个向量均可平移到同一个平面内,所以空间向量与平面向量加减法均可以用三角形或平行四边形法则,是一样的.3.空间向量加法的运算律(1)交换律:a+b=_______.(2)结合律:(a+b)+c=a+(b+c).4.空间向量的数乘运算(1)定义:实数λ与空间向量a的乘积______仍然是一个________,称为向量的数乘运算.(2)向量a与λa的关系λ的范围∠AOB数乘向量与向量数量积的结合律思考感悟课堂互动讲练①三角形法则和平行四边形法则;②正确使用运算律;③有限个向量顺次首尾相连,则从第一个向量的起点指向最后一个向量的终点的向量即表示这有限个向量的和向量.【名师点评】化简向量表达式主要是利用平行四边形法则或三角形法则.在化简过程中遇到减法时可灵活应用相反向量转化成加法,也可按减法法则进行运算,加、减法之间可相互转化.(1)对向量的数量积的运算律应注意以下几点:①要准确区分两向量数量积的运算性质与数乘向量实数与实数之积之间的差异.②数量积运算不满足消去律.若a、b、c(b≠0)为实数,ab=bc⇒a=c;但对于向量,就不正确,即a·b=b·ca=c.由图可以看出.自我挑战2在三棱锥SABC中,SA⊥BC,SB⊥AC,求证:SC⊥AB.1.在运用空间向量的运算法则化简向量表达式时,要结合空间图形,观察分析各向量在图形中的表示,运用运算法则,化简到最简为止.2.证明两向量共线的方法为:首先判断两向量中是否有零向量.若有,则两向量共线;若两向量a,b中,b≠0,且有a=λb(λ∈R),则a,b共线.3.两向量的数量积,其结果是个数量,而不是向量,它的值为两向量的模与两向量夹角的余弦值的乘积,其符号由夹角的余弦值决定.4.当a≠0时,由a·b=0不能推出b一定是零向量,这是因为任一个与a垂直的非零向量b,都有a·b=0,这由向量的几何意义就可以理解.