如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
电教手段在教学中的运用三、电教手段在课堂教学过程整体优化中的具体应用与作用(一)电教手段在直观教学中为学生获取知识提供丰富而鲜明的感性材料几何形、体概念的建立是抽象的。可以运用电教手段直观演示把几何图形和具体事物结合起来,把抽象的知识具体化、形象化,有利于培养学生的空间想象能力。一年级教材中新增加“图形认识”一节。为了使6岁儿童初步认识长、正方形,三角形、圆等,可以设计这样的复合片:底片是长方形、正方形,三角形和圆的几何图形。上面复合一片与底面一一对应的实物图:国旗、手绢、三角板和圆形钟面。引导学生从熟悉的事物入手,认识事物的外形。有了感性的认识再把实物图复合片揭掉露出各种几何图形,从而得到正确而抽象的概念。讲“角”与“平行线”时也可采用以上方法制片。讲“角”时可设计:底片是锐角、钝角、直角等图形,上面复合一一对应的“张开一定角度的剪子、扇子、钟面上的时针、分针等。讲“平行线”时可设计:火车的铁轨、无轨电车的电线、双杠等与底片上各种平行线相重合。便于为学生抽象地认识几何图形提供感性材料。直观教学证明,人的感官和知觉,对教材感知得越是多种多样就越能促使学生牢固地认识和理解、掌握所学知识的规律。讲一年级口述加、减法应用题时,学生头脑中“加”、“减”的概念没有完全建立,到三年级才揭示完整的定义。为了帮助学生准确地口头描述,可设计这样的抽拉投影片:(1)底片是蓝天上飞着5只小鸟,移动片上画3只小鸟。演示时抽拉移动表示又飞来了3只小鸟,提问:一共有几只小鸟?(2)底片是停车场上有9辆汽车,移动片上画2辆汽车,和9辆汽车合在一起。2辆车演示时抽拉移动表示开走了2辆汽车,提问:停车场上还有几辆汽车?这种简单的一拉一动,使静变为动,使死物变活,在动态中为学生提供感性材料使学生清晰地悟出:两部分“合”起来就是“加”的意思。从总数中“去掉”一部分就是“减”的意思。这本来很抽象的“加减”概念,一经演示就具体化了,从而帮助学生完成了从形象入手到建立抽象概念的第一步。(二)采用电教手段突出教材重点、难点,体现知识间的内在联系,是有效完成教学任务的关键抓住教材的重点、难点、新旧知识的连接点制作投影片教学,不仅可以避免用语言表达的困难,也可以节省教学时间,使学生一目了然,把复杂的内容简单化,把深难的内容通俗化,化难为易,使学生豁然开朗。第一,一年级讲“9加几”、“8加几”的进位加法时,学生要理解和掌握“凑十法”。这要在数的分解与组成的基础上进行。教学时可采用投影片与散片结合使用。例:9+4、先出示9个绿皮球(一张片),再出示4个红皮球(散片),一共有几个皮球?怎么想呢?边理顺学生的思路边演示;先想9加几得10,9加1得10。于是把4分成1和3,拉过一个红皮球和9个绿皮球放在一起凑成10。再想10和剩下的3加起来得13。不把4分解成2和2,是为了突出凑十法的特点。“8加几”,“7加几”同样的思路,同样的演示方法,重点都突出在8与7分别和几凑成10,就把另一个数(散片)分成几和几,凑十后再用10加几。这组演示学具可以多用,简单易变,有利于学生理解凑十法,又能判断分解数的要求分散难点,算理清楚,学生易于接受,效果也突出。第二,二年级建立除法概念。区分等分、包含时,学生理解十分困难。我们抓住其本质特征,透过易混之处,用电教手段区分比较,使学生亲自感知,概念掌握是十分清楚的。讲课时首先设计了两个题:①把12朵红花,平均分给3个小朋友,每人分几朵?②有12朵红花,每个小朋友可分3朵,可以分给几个小朋友?学生列式都是12÷3,怎样理解这个算式的意思呢?只靠讲,学生很难理解。只有通过分摆演示才能突破这个难点。在投影仪上师生分别分摆比在讲桌上分摆清晰,可以放大又可看分摆的全过程。演示中突出等分、包含的本质区别:①题分时先从12朵红花中取3朵分给每人1朵,再取3朵每人1朵直到分完。突出按份数分一次拿3朵,每人分一朵,保证每人分得一样多,即等分。②题分时,先拿3朵分给一个人,再拿3朵给一个人,直到分完。突出看12朵里有几个3朵,(按一份数分),即包含。以上方法学生清楚地看到不同的分的过程。突出了同一算式的两种意义。因此,演示数学,信息传递快,而且紧扣教学重点。难点处也会迎刃而解。