如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
学员个性化教学方案授课时间:2012年5月8日学科:数学授课方式:授课老师刘老师学员姓名年级性别总课时次第次授课教学主题:有理数及其运算教学目标:1.掌握有理数等基本概念重点难点:1.能正确理解数轴2.能够进行有理数运算教学过程:一.有理数及其运算数轴的三要素:原点、正方向、单位长度(三者缺一不可)。※任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。¤数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。※绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。※正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。0-1-2-3123越来越大或※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥0※比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。※绝对值的性质:①对任何有理数a,都有|a|≥0②若|a|=0,则|a|=0,反之亦然③若|a|=b,则a=±b④对任何有理数a,都有|a|=|-a|※有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。③一个数同0相加,仍得这个数。※加法的交换律、结合律在有理数运算中同样适用。¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。※有理数减法法则:减去一个数,等于加上这个数的相反数。¤有理数减法运算时注意两“变”:①改变运算符号;②改变减数的性质符号(变为相反数)有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。¤有理数的加减法混合运算的步骤:①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法则,加法交换律、结合律简化计算。(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)※有理数乘法法则:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘,积仍为0。※如果两个数互为倒数,则它们的乘积为1。(如:-2与、…等)※乘法的交换律、结合律、分配律在有理数运算中同样适用。¤有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。¤乘积为1的两个有理数互为倒数。注意:①零没有倒数②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。③正数的倒数是正数,负数的倒数是负数。※有理数除法法则:①两个有理数相除,同号得正,异号得负,并把绝对值相除。②0除以任何非0的数都得0。0不可作为除数,否则无意义。指数底数幂※有理数的乘方※注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。※乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数;③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0;⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。※有理数混合运算法则:①先算乘方,再算乘除,最后算加减。②如果有括号,先算括号里面的。二.练习:一、选择题1、A为数轴上表示-1的点,将点A在数轴上向右平移3个单位长度到点B,则点B所表示的实数为()A.3B.2C.-4D.2或-42、如果|a|=-a,那么a一定是()A.正数B.负数C.非正数D.非负数3、一个数是10,另一个数比10的相反数小2,则这两个数的和为()A.18B.-2C.-18D.24、下列各式的值等于5的是()(A)|-9|+|+4|;(B)|(-9)+(+4)|;(C)|(+9)―(―4)|;(D)|-9|+|-4|.5、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸