如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
HarbinInstituteofTechnology自动控制原理设计报告课程名称:自动控制原理设计题目:核反应棒控制系统院系:电气工程及自动化学院班级:设计者:学号:指导教师:设计时间:2011年12月20哈尔滨工业大学哈尔滨工业大学课程设计任务书姓名:院(系):电气工程及自动化学院专业:测控技术与仪器班号:任务起至日期:2011年112月10日至2011年12月20日课程设计题目:核反应棒控制系统已知技术参数和设计要求:1、设计合适的校正网络,使得系统足够稳定。2、系统的阶跃响应的超调量在10%到20%之间。3、调节时间不大于2s。工作量:用一天的时间进行手工设计,然后使用matlab进行仿真;用一上午时间撰写设计报告。工作计划安排:1、2011年12月10日进行手工设计,并用matlab进行仿真;2、2011年12月20日撰写实验报告。同组设计者及分工:无同组人指导教师签字___________________2011年12月日教研室主任意见:教研室主任签字___________________2011年12月日*注:此任务书由课程设计指导教师填写。哈尔滨工业大学课程设计说明书(论文)目录第一章、设计思路……………………………………………………………………51.1超前补偿方法……………………………………………………………51.2闭环主导极点方法………………………………………………………5第二章、手工设计部分………………………………………………………………52.1、数据计算………………………………………………………………^52.2开环传递函数补偿前后的伯德图…………………………………………62.3电路实现……………………………………………………………………7第三章、计算机辅助设计部分…………………………………………………………83.1simulink仿真框图…………………………………………………………83.2伯德图………………………………………………………………………83.3阶跃响应曲线………………………………………………………………10第四章、设计心得体会………………………………………………………………11第五章、参考文献……………………………………………………………………11第一章设计思路根据题目要求很容易求出系统的开环传递函数为G(s)=Ka/[s2(0.025s+1)]可知系统是三阶的,属于高阶系统,题目有三个要求①设计合适的校正网络,使得系统足够稳定,②系统的阶跃响应的超调量在10%到20%之间,③调节时间不大于2s。系统的阶跃响应的超调量和调节时间都是系统的动态性能指标,因此如果想要必须从系统的动态指标入手,找出设计突破口。在设计过程中我先后采用了两种设计思想,第一中是超前滞后补偿思想和闭环主导极点补偿思想。1.1超前补偿方法高阶系统性能指标间的关系式(经验公式)为:Mr=1/sinγ;σp=0.16+0.4(Mr-1)ts=π[2+1.5(Mr-1)+2.5(Mr-1)2]/wc根据以上公式可求出γ>58。且wc>3.3rad/s。因为当wc=3.3rad/s时γ=-10左右,如果采用超前补偿进行相位补偿的话,应该补偿的相位裕度超过了70度,但是当补偿角度大于60度时补偿网络很难实现,因此我考虑使用两次超前补偿,但是经过计算发现,要使第二次超前补偿补偿角度最大(达到60度),第一次超前补偿角度最多也只能达到5度左右。而且有一个很奇怪的现象就是当两次补偿的角度“逼近”70度时,使用matlab仿真发现超调量和调节时间都超过了题目要求,因此利用高阶系统性能指标间的关系式(经验公式),使用超前补偿的方法是行不通的。1.2利用闭环主导极点的方法教材的第三章《控制系统的时域分析法》讲过:高阶系统中离虚轴最近的积点,如果它与虚轴的距离比其他极点的距离的1/5还小,并且该极点附近没有零点,则可以认为系统的响应主要由该极点决定。这种对系统响应起主导作用的极点称为系统的主导极点。因此只要找到满足要求的闭环主导极点,即可以将高阶系统的动态性能指标之间的关系式用二阶系统的性能指标关系式来求。二阶系统的动态性能指标关系式为:σp=e-ξπ(1-ξ2)1/2ts=4/(ξWn)根据以上公式可求出ξ和Wn的范围,有因为闭环极点的为S1=-ξWn+(1-ξ2)1/2、S2=-ξWn-(1-ξ2)1/2,所以可求出闭环极点,然后求出Ka和第三个闭环极点,这样就能求出补偿后的闭环传递函数,再求出补偿环节Gc(s)。