2022-2023学年江苏省江都市仙城中学数学高三第一学期期末监测模拟试题含.pdf
上传人:文库****品店 上传时间:2024-09-11 格式:PDF 页数:21 大小:2.2MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2022-2023学年江苏省江都市仙城中学数学高三第一学期期末监测模拟试题含.pdf

2022-2023学年江苏省江都市仙城中学数学高三第一学期期末监测模拟试题含.pdf

预览

免费试读已结束,剩余 11 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年高三上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数f(x)lnxaxb的图象在点(1,ab)处的切线方程是y3x2,则ab()A.2B.3C.-2D.-372.已知ABC的内角A、B、C的对边分别为a、b、c,且A60,b3,AD为BC边上的中线,若AD,2则ABC的面积为()25315315353A.B.C.D.444413.设i为数单位,z为z的共轭复数,若z,则zz()3i1111A.B.iC.D.i10101001004.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A.96B.84C.120D.3605.定义域为R的偶函数f(x)满足任意xR,有f(x2)f(x)f(1),且当x[2,3]时,f(x)2x212x18.若函数yf(x)log(x1)至少有三个零点,则a的取值范围是()a2356A.0,B.0,C.0,D.0,235636.在等差数列a中,a5,aaa9,若b(nN),则数列b的最大值是()n2567nann1A.3B.3C.1D.37.已知函数f(x)=eb﹣x﹣ex﹣b+c(b,c均为常数)的图象关于点(2,1)对称,则f(5)+f(﹣1)=()A.﹣2B.﹣1C.2D.48.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为()22A.B.C.D.33339.过抛物线y22pxp0的焦点F的直线与抛物线交于A、B两点,且AF2FB,抛物线的准线l与x轴交于C,ACF的面积为82,则AB()A.6B.9C.92D.62110.已知函数f(x)ax2(x1)ex(aR)若对区间01,内的任意实数x、x、x,都有f(x)f(x)f(x),2123123则实数a的取值范围是()A.1,2B.e,4C.1,4D.1,2e,411.已知角的顶点与坐标原点O重合,始边与x轴的非负半轴重合,它的终边过点P(3,4),则tan2的4值为()24172417A.B.C.D.73173112.为了得到函数ysin2x的图象,只需把函数ysin2x的图象上所有的点()6A.向左平移个单位长度B.向右平移个单位长度66C.向左平移个单位长度D.向右平移个单位长度1212二、填空题:本题共4小题,每小题5分,共20分。ex2019,x013.设函数f(x),则满足fx24f(3x)的x的取值范围为________.2020,x014.曲线f(x)=(x2+x)lnx在点(1,f(1))处的切线方程为____.15.ABC的角A,B,C所对的边分别为a,b,c,且c2a2b2ab,sinAsinB26sinAsinB,若c3,则ab的值为__________.alnxx2x016.设实数a0,若函数fx1的最大值为f1,则实数a的最大值为______.xa2x0x三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。x2y217.(12分)设点F(c,0),F(c,0)分别是椭圆C:1(a2)的左,右焦点,P为椭圆C上任意一点,且12a24PFPF的最小值为1.12(1)求椭圆C的方程;(2)如图,直线l:x5与x轴交于点E,过点F且斜率k0的直线l与椭圆交于A,B两点,M为线段EF的中212点,直线AM交直线l于点N
立即下载