如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
圆周运动的绳杆模型2绳球模型杆球模型模型推广及应用向心力公式:一、绳球模型(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的向心力全部由质点的重力来提供,这时有例1、“水流星”是一种常见的杂技项目,该运动可以简化为轻绳一端系着小球在竖直平面内的圆周运动模型,如图所示,已知绳长为L,重力加速度为g,忽略空气阻力,则()练1、如图所示,不少同学都看过杂技演员表演的“水流星”,一根细绳系着盛水的杯子,演员抡起绳子,杯子在竖直平面内做圆周运动。杯子可视为质点,杯子与圆心O的距离为1m,重力加速度大小为10m/s2.为使杯子运动到最高点时(已经杯口朝下)水不会从杯里洒出,则杯子通过最高点时的速度大小可能为()例2、如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4m,最低点处有一小球(半径比r小的多),现给小球一水平向右的初速度v0,则要使小球不脱离圆轨道运动,v0应满足(g=10m/s2)()①v0≥0②v0≥4m/s③v0≥2【解答】解:对于第(1)种情况,当v0较大时,小球能够通过最高点,这时小球在最高点处需要满足的条件是mg≤m练2、如图所示,一个质量为0.6kg的小球以某一初速度从P点水平抛出,恰好从圆弧ABC的A点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机被能损失).已知圆弧的半径R=0.6m,θ=60°,小球到达A点时的速度vA=8m/s.g取10m/s2,求:(1)小球做平抛运动的初速度v0(2)P点与A点的高度差(3)小球刚好能到达圆弧最高点C,求此过程小球克服摩擦力所做的功。例3、如图甲所示,用一轻质绳拴着一质量为m的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为T,小球在最高点的速度大小为v,其T﹣v2图象如图乙所示,则()【解答】解:A、B、在最高点时,绳对小球的拉力和重力的合力提供向心力,则得:mg+T=m1617例4、一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球做半径为R的圆周运动,以下说法正确的是()A.球过最高点时,杆所受的弹力可以等于零B.球过最高点时,最小速度为例5、如图所示,可视为质点的、质量为m的小球,在半径为R的竖直放置的光滑圆形管道内做圆周运动,下列有关说法中正确的是()2021例6、如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A和球B,杆上距球A为L处的点O装在光滑的水平转动轴上,外界给予系统一定的能量后,杆和球在竖直面内转动。在转动的过程中,忽略空气的阻力。若球B运动到最高点时,球B对杆恰好无作用力,则下列说法正确的是()【解答】解:球B运动到最高点时,球B对杆恰好无作用力,即重力恰好提供向心力,有:2425练3、如图甲,小球用不可伸长的轻绳连接后绕固定点O在竖直面内做圆周运动,小球经过最高点时的速度大小为v,此时绳子的拉力大小为FT,拉力FT与速度的平方v2的关系如图乙所示,图象中的数据a和b包括重力加速度g都为已知量,以下说法正确的是()27本堂小结