中考数学一轮复习-不等式组试题.doc
上传人:王子****青蛙 上传时间:2024-09-09 格式:DOC 页数:10 大小:197KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

中考数学一轮复习-不等式组试题.doc

中考数学一轮复习-不等式组试题.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2017年中考数学一轮复习第6讲《不等式(组)》【考点解析】1.不等式的性质【例题】(2015乐山)下列说法不一定成立的是()A.若,则B.若,则C.若,则D.若,则【答案】C.【解析】A.在不等式的两边同时加上c,不等式仍成立,即,故本选项错误;B.在不等式的两边同时减去c,不等式仍成立,即,故本选项错误;C.当c=0时,若,则不等式不成立,故本选项正确;D.在不等式的两边同时除以不为0的,该不等式仍成立,即,故本选项错误.故选C.【变式】(2015•怀化)下列不等式变形正确的是()A.由a>b得ac>bcB.由a>b得﹣2a>﹣2bC.由a>b得﹣a<﹣bD.由a>b得a﹣2<b﹣2【解析】不等式的性质.A:因为c的正负不确定,所以由a>b得ac>bc不正确,据此判断即可.B:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.【解答】解:∵a>b,∴①c>0时,ac>bc;②c=0时,ac=bc;③c<0时,ac<bc,∴选项A不正确,∵a>b,∴﹣2a<﹣2b,∴选项B不正确;∵a>b,∴﹣a<﹣b,∴选项C正确;∵a>b,∴a﹣2>b﹣2,∴选项D不正确.故选:C.2.不等式(组)的解集的数轴表示【例题】(2016·福建龙岩)解不等式组:,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.【解答】解:由①得x≥4,由②得x<1,∴原不等式组无解,【变式】1.把不等式组的解集表示在数轴上,正确的是ABCD【答案】B【解析】:解不等式(1)得x>-1,解不等式(2)得x≤1,所以解集为-1<x≤1故选B2.(2016广西南宁)解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,,不等式组的解集是:﹣3<x≤1.3.不等式(组)的解法【例题】(2016·山东滨州)对于不等式组下列说法正确的是()A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是﹣3,﹣2,﹣1D.此不等式组的解集是﹣<x≤2【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】分别解两个不等式得到x≤4和x>﹣2.5,利用大于小的小于大的取中间可确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断.【解答】解:,解①得x≤4,解②得x>﹣2.5,所以不等式组的解集为﹣2.5<x≤4,所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4.故选B.【变式】1.(2016·江西)将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先解出不等式3x﹣2<1的解集,即可解答本题.【解答】解:3x﹣2<1移项,得3x<3,系数化为1,得x<1,故选D.2.小亮在解不等式组时,解法步骤如下:解不等式①,得x>3,…第一步;解不等式②,得x>﹣8,…第二步;所有原不等式组组的解集为﹣8<x<3…第三步.对于以上解答,你认为下列判断正确的是()A.解答有误,错在第一步B.解答有误,错在第二步C.解答有误,错在第三步D.原解答正确无误【答案】C.【解析】解不等式①,得x>3,解不等式②,得x>﹣8,所以原不等式组的解集为x>3.故选C.4.确定不等式(组)中字母的取值范围【例题】(2016·重庆市)从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣3B.﹣2C.﹣1D.0【分析】根据不等式组无解,求得a≤1,解方程得x=,于是得到a=﹣3或1,即可得到结论.【解答】解:解得,∵不等式组无解,∴a≤1,解方程﹣=﹣1得x=,∵x=为整数,a≤1,∴a=﹣3或1,∴所有满足条件的a的值之和是﹣2,故选B.【变式】若关于x的不等式(2﹣m)x<1的解为x>,则m的取值范围是()A.m>0B.m<0C.m>2D.m<2【答案】C.【解
立即下载