人教版八年级数学下册教案(精品多篇).docx
上传人:lj****88 上传时间:2024-09-13 格式:DOCX 页数:23 大小:22KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

人教版八年级数学下册教案(精品多篇).docx

人教版八年级数学下册教案(精品多篇).docx

预览

免费试读已结束,剩余 13 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版八年级数学下册教案(精品多篇)【说明】人教版八年级数学下册教案(精品多篇)为的会员投稿推荐,但愿对你的学习工作带来帮助。人教版八年级数学下册教案篇一一、分解因式1、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。2、因式分解与整式乘法是互逆关系。因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘。二、提公共因式法1、如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。这种分解因式的方法叫做提公因式法。如:ab+ac=a(b+c)2、概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即:ma+mb—mc=m(a+b—c)3、易错点点评:(1)注意项的符号与幂指数是否搞错;(2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉。三、运用公式法1、如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。2、主要公式:4、运用公式法:(1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号。(2)完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正可负,且它是前两项幂的底数乘积的2倍。5、因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。人教版八年级数学下册教案篇二(一)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数。3.将原多项式分解成(x+q)(x+p)的形式。(二)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分。2.分式进行约分的目的是要把这个分式化为最简分式。3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式。如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理。当然,简单的分式之分子分母可直接乘方。6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减。(三)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。4.通分的依据:分式的基本性质。5.通分的关键:确定几个分式的'公分母。通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母。6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,