人教版八年级下册数学教案精品多篇.docx
上传人:lj****88 上传时间:2024-09-13 格式:DOCX 页数:16 大小:18KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

人教版八年级下册数学教案精品多篇.docx

人教版八年级下册数学教案精品多篇.docx

预览

免费试读已结束,剩余 6 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版八年级下册数学教案精品多篇【编辑】人教版八年级下册数学教案精品多篇为的会员投稿推荐,但愿对你的学习工作带来帮助。人教版八年级下册数学教案篇一八年级下数学教案-变量与函数(2)一、教学目的1.使学生理解自变量的取值范围和函数值的意义。2.使学生理解求自变量的取值范围的两个依据。3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。4.通过求函数中自变量的取值范围使学生进一步理解函数概念。二、教学重点、难点重点:函数自变量取值的求法。难点:函灵敏处变量取值的确定。三、教学过程复习提问1.函数的定义是什么?函数概念包含哪三个方面的内容?2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)3.什么叫二次根式?使二次根式成立的条件是什么?(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。新课1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。(2)自变量取值范围要使实际问题有意义。3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:(1)例3中的4个小题归纳起来仍是三类题型。(2)求函数值的问题实际是求代数式值的问题。补充例题求下列函数当x=3时的函数值:(1)y=6x-4;(2)y=--5x2;(3)y=3/7x-1;(4)。(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)小结1.解析法的意义:用数学式子表示函数的方法叫解析法。2.求函数自变量取值范围的两个方法(依据):(1)要使函数的解析式有意义。①函数的解析式是整式时,自变量可取全体实数;②函数的解析式是分式时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。(2)对于反映实际问题的函数关系,应使实际问题有意义。3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。练习:P94中1,2,3。作业:P95~P96中A组3,4,5,6,7。B组1,2。四、教学注意问题1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。人教版八年级下册数学教案篇二教学内容分析:⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。学生分析:⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。教学目标:⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。重点:掌握正方形的性质与判定,并进行简单的推理。难点:探索正方形的判定,发展学生的推理能教学方法:类比与探究教具准备:可以活动的四边形模型。教学过程:一:复习巩固,建立联系。【教师活动】问题设置:①平行四边形、矩形,菱形各有哪些性质?②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。【学生活动】学生回忆,并举手回答,对于填空题,让更多的学生参与,说