如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第二章:数列1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第2项起,每一项都不小于它的前一项的数列.6、递减数列:从第2项起,每一项都不大于它的前一项的数列.7、常数列:各项相等的数列.8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.9、数列的通项公式:表示数列的第项与序号之间的关系的公式.10、数列的递推公式:表示任一项与它的前一项(或前几项)间的关系的公式.11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.12、由三个数,,组成的等差数列可以看成最简单的等差数列,则称为与的等差中项.若,则称为与的等差中项.13、若等差数列的首项是,公差是,则.通项公式的变形:=1\*GB3①;=2\*GB3②;=3\*GB3③;=4\*GB3④;=5\*GB3⑤.14、若是等差数列,且(、、、),则;若是等差数列,且(、、),则;下角标成等差数列的项仍是等差数列;连续m项和构成的数列成等差数列。15、等差数列的前项和的公式:=1\*GB3①;=2\*GB3②.16、等差数列的前项和的性质:=1\*GB3①若项数为,则,且,.=2\*GB3②若项数为,则,且,(其中,).17、如果一个数列从第项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.18、在与中间插入一个数,使,,成等比数列,则称为与的等比中项.若,则称为与的等比中项.19、若等比数列的首项是,公比是,则.20、通项公式的变形:=1\*GB3①;=2\*GB3②;=3\*GB3③;=4\*GB3④.21、若是等比数列,且(、、、),则;若是等比数列,且(、、),则;下角标成等差数列的项仍是等比数列;连续m项和构成的数列成等比数列。22、等比数列的前项和的公式:.时,,即常数项与项系数互为相反数。23、等比数列的前项和的性质:=1\*GB3①若项数为,则.=2\*GB3②.=3\*GB3③,,成等比数列.24、与的关系:一、求通项公式的方法:1、由数列的前几项求通项公式:待定系数法①若相邻两项相减后为同一个常数设为,列两个方程求解;②若相邻两项相减两次后为同一个常数设为,列三个方程求解;③若相邻两项相减后相除后为同一个常数设为,q为相除后的常数,列两个方程求解;2、由递推公式求通项公式:①若化简后为形式,可用等差数列的通项公式代入求解;②若化简后为形式,可用叠加法求解;③若化简后为形式,可用等比数列的通项公式代入求解;④若化简后为形式,则可化为,从而新数列是等比数列,用等比数列求解的通项公式,再反过来求原来那个。(其中是用待定系数法来求得)3、由求和公式求通项公式:①②③检验,若满足则为,不满足用分段函数写。4、其他(1)形式,便于求和,方法:迭加;例如:有:(2)形式,同除以,构造倒数为等差数列;例如:,则,即为以-2为公差的等差数列。(3)形式,,方法:构造:为等比数列;例如:,通过待定系数法求得:,即等比,公比为2。(4)形式:构造:为等比数列;(5)形式,同除,转化为上面的几种情况进行构造;因为,则,若转化为(1)的方法,若不为1,转化为(3)的方法二、等差数列的求和最值问题:(二次函数的配方法;通项公式求临界项法)①若,则有最大值,当n=k时取到的最大值k满足②若,则有最小值,当n=k时取到的最大值k满足三、数列求和的方法:①叠加法:倒序相加,具备等差数列的相关特点的,倒序之后和为定值;②错位相减法:适用于通项公式为等差的一次函数乘以等比的数列形式,如:;③分式时拆项累加相约法:适用于分式形式的通项公式,把一项拆成两个或多个的差的形式。如:,等;④一项内含有多部分的拆开分别求和法:适用于通项中能分成两个或几个可以方便求和的部分,如:等;四、综合性问题中①等差数列中一些在加法和乘法中设一些数为类型,这样可以相加约掉,相乘为平方差;②等比数列中一些在加法和乘法中设一些数为类型,这样可以相乘约掉。