如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
高考数列知识点总结高考数列知识点总结在平日的学习中,大家最不陌生的就是知识点吧!知识点就是学习的重点。想要一份整理好的知识点吗?下面是小编为大家收集的高考数列知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。数列的相关概念①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。等差数列通项公式an=a1+(n—1)dn=1时a1=S1n≥2时an=Sn—Sn—1an=kn+b(k,b为常数)推导过程:an=dn+a1—d令d=k,a1—d=b则得到an=kn+b等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。有关系:A=(a+b)÷2前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①Sn=an+an—1+an—2+······+a1=an+(an—d)+(an—2d)+······+[an—(n—1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n—1)d÷2Sn=dn2÷2+n(a1—d÷2)亦可得a1=2sn÷n—an=[sn—n(n—1)d÷2]÷nan=2sn÷n—a1有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1等差数列性质一、任意两项am,an的关系为:an=am+(n—m)d它可以看作等差数列广义的通项公式。二、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈N*三、若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq四、对任意的k∈N*,有Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…成等差数列。等比数列1、等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。有关系:注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G=ab是a,G,b三数成等比数列的必要不充分条件。2、等比数列通项公式an=a1*q’(n—1)(其中首项是a1,公比是q)an=Sn—S(n—1)(n≥2)前n项和当q≠1时,等比数列的前n项和的公式为Sn=a1(1—q’n)/(1—q)=(a1—a1*q’n)/(1—q)(q≠1)当q=1时,等比数列的前n项和的公式为Sn=na13、等比数列前n项和与通项的关系an=a1=s1(n=1)an=sn—s(n—1)(n≥2)4、等比数列性质(1)若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;(2)在等比数列中,依次每k项之和仍成等比数列。(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}(4)等比中项:q、r、p成等比数列,则aq·ap=ar,ar则为ap,aq等比中项。记πn=a1·a2…an,则有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。(5)等比数列前n项之和Sn=a1(1—q’n)/(1—q)(6)任意两项am,an的关系为an=am·q’(n—m)(7)在等比数列中,首项a1与公比q都不为零。注意:上述公式中a’n表示a的n次方。等差数列对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代