TEST FUNCTIONS.pdf
上传人:sy****28 上传时间:2024-09-11 格式:PDF 页数:6 大小:70KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

TEST FUNCTIONS.pdf

TESTFUNCTIONS.pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

TestProblemsinOptimizationXin-SheYangDepartmentofEngineering,UniversityofCambridge,CambridgeCB21PZ,UKAbstractTestfunctionsareimportanttovalidatenewoptimizationalgorithmsandtocomparetheperformanceofvariousalgorithms.Therearemanytestfunctionsintheliterature,butthereisnostandardlistorsetoftestfunctionsonehastofollow.Newoptimizationalgorithmsshouldbetestedusingatleastasubsetoffunctionswithdiversepropertiessoastomakesurewhetherornotthetestedalgorithmcansolvecertaintypeofopti-mizationefficiently.Hereweprovideaselectedlistoftestproblemsforunconstrainedoptimization.Citationdetail:X.-S.Yang,Testproblemsinoptimization,in:EngineeringOptimization:AnIntroduc-tionwithMetaheuristicApplications(EdsXin-SheYang),JohnWiley&Sons,(2010).arXiv:1008.0549v1[math.OC]3Aug2010Inordertovalidateanynewoptimizationalgorithm,wehavetovalidateitagainststandardtestfunctionssoastocompareitsperformancewithwell-establishedorexistingalgorithms.Therearemanytestfunctions,sothereisnostandardlistorsetoftestfunctionsonehastofollow.However,varioustestfunctionsdoexist,sonewalgorithmsshouldbetestedusingatleastasubsetoffunctionswithdiversepropertiessoastomakesurewhetherornotthetestedalgorithmcansolvecertaintypeofoptimizationefficiently.Inthisappendix,wewillprovideasubsetofcommonlyusedtestfunctionswithsimpleboundsasconstraints,thoughtheyareoftenlistedasunconstrainedproblemsinliterature.Wewilllistthefunctionformf(x),itssearchdomain,optimalsolutionsx∗and/oroptimalTobjectivevaluef∗.Here,weusex=(x1,...,xn)wherenisthedimension.Ackley’sfunction:nn1v11f(x)=20expux2expcos(2πx)+20+e,(1)−h−5unXii−hnXiiti=1i=1wheren=1,2,...,and32.768x32.768fori=1,2,...,n.Thisfunctionhasthe−≤i≤globalminimumf∗=0atx∗=(0,0,...,0).DeJong’sfunctions:ThesimplestofDeJong’sfunctionsistheso-calledspherefunctionnf(x)=x2,5.12x5.12,(2)Xiii=1−≤≤whoseglobalminimumisobviouslyf∗=0at(0,0,...,0).Thisfunctionisunimodalandconvex.Arelatedfunctionistheso-calledweightedspherefunctionorhyper-ellipsoidfunctionnf(x)=i