基于低通滤波的高机动性视频目标跟踪毕业论文.doc
上传人:天马****23 上传时间:2024-09-12 格式:DOC 页数:30 大小:1.6MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

基于低通滤波的高机动性视频目标跟踪毕业论文.doc

基于低通滤波的高机动性视频目标跟踪毕业论文.doc

预览

免费试读已结束,剩余 20 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

宁波大学信息学院本科毕业设计(论文)2本科毕业设计(论文)题目:(中文)基于低通滤波的高机动性视频目标跟踪(英文)EnhancedLowpassFilterBasedVidePredictiveTrackingforTargetwithHighMobility摘要【摘要】在现代检测领域中,预测目标是一种很普遍的现象。在预测目标移动状态过程中,应用滤波法是常用的技术手段。在众多预测技术当中,人们常常使用卡尔曼滤波器来跟踪目标在运动情况下的轨迹。然而,卡尔曼滤波仍存在一些缺点:用来预测轨迹时尚缺乏精确度,为了解决这个问题,文中推荐另一种传统滤波——低通滤波。设计低通滤波的方法就是掺入带惯性的一阶泰勒级数,在文中使用过程中还要考虑目标所在的运动状态。基于这种情况,则需要在级数中加入线性项和惯性项算法,这两种算法分别代表高机性和非高机性两种状况。当预测目标状态时,要考虑目标高机动性(目标速度在瞬间发生变化)和非高机动性,当目标高速移动时,低通滤波检测速度的变化,检测到所给定的目标高机动变化根据运动情况则要重新配置低通滤波来实现预测跟踪。为了证明低通滤波的实用性,在预测中融入卡尔曼滤波共同对目标检测跟踪,实验表明在预测轨迹跟踪质量中,所建议的低通滤波对预测轨迹具有很好的效果比卡尔曼滤波更加有预测能力,从而证明了它的可行性。所以,在视频跟踪应用范围内,把低通滤波作为预测跟踪器是很好的选择。【关键词】视频跟踪;低通滤波;跟踪质量;卡尔曼滤波;高机动性EnhancedLowpassFilterBasedVideoPredictiveTrackingforTargetwithHighMobilityAbstract【ABSTRACT】Inthefieldofmoderndetection,predictiontargetisaverycommonphenomenon.Predictthestateoftheprocesstargetmobileapplicationfilteringmethodiscommonlyusedtechniques.KalmanfilterisoneofGM,whichismainlyusedinpredictingthemovementofthetargettrack.However,Kalmanfilteringarestillsomedisadvantages:lackofprecisionforpredictingthetrajectoryofthefashion,inordertosolvethisproblem,anotherconventionalpaperfilterrecommended-low-passfiltering.Low-passfilterdesignedmethodisincorporatedwithafirstorderTaylorseriesofinertia,inthearticlebyusingfilterwhichshouldalsobeconsideredwhenthetargetismoving.Basedonthissituation,youneedtoaddlinearandinertiaalgorithmsinseries,thesetwoalgorithmsrepresenttwohighstatuswhichisahighmobilityandnon-mobilityWhenthepredictedtargetstate,toconsiderchangesinthetargethighmobilityhighmobility(targetspeedchangeoccursatthemoment)andnon-highmaneuverability,whenthetargetismovingathighspeed,low-passfilteringtodetectchangesinthespeeddetectedbyagiventargetwillhavetobereconfiguredaccordingtothemovementofthelowpassfiltertoachievetheforecasttrack.Toprovetheusefulnessofthelow-passfiltering,Kalmanfilterintegratedintothejointintheforecastfortargetdetectionandtracking,trajectorytrackingexperimentsshowtha