statisticalinference课件3.pdf
上传人:sy****28 上传时间:2024-09-14 格式:PDF 页数:11 大小:170KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

statisticalinference课件3.pdf

statisticalinference课件3.pdf

预览

免费试读已结束,剩余 1 页请下载文档后查看

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

3Lecture3:PRINCIPLESOFDATAREDUCTIONANDINFERENCE3.1DataReductioninStatisticalInferenceGivenvectorX=(X1;X2;::;Xn)ofni.i.d.randomvariables,eachwithadensityf(x;θ);wearemeanttoconductinferenceonθ2Θbasedontheobservationsx1;x2;::;xn:LetXtakesvaluesinX-thesamplespace.Thestatisticianusestheinformationintheobservationsx1;x2;::;xntoconducttheinference.His/herwishistosummarizetheinformationinthesamplebydeterminingafewkeyfeaturesofthesamplevaluesthroughtransformingthesamplevalues.Calculatingsuchtransformations(i.e.functionsofthesample)meanstocalculateastatistic.Typically,dim(T)<<n,i.e.usingthestatistic,weachievethegoalofdatareduction:ratherthanreportingtheentiresamplex,thestatisticreportsonlythatT(x)=t.Datareductionintermsofaparticularstatisticcanbethoughtofasapartitionofthesamplespace.WepartitionXintodisjointsubsetsAt=fX:T(X)=tg.Ifτ=ft:t=T(x)forsomex2XgthenthesamplespaceXisSrepresentedasaunionofthefollowingdisjointsets(i.e.ispartitioned):X=t2τAt.Theultimategoalinthedatareductionis,whenonlyusingthevalueofthestatisticT(x)insteadofthewholevectorx;"nottoloseinformation"abouttheparameterofinterestθ.Thewholeinformationaboutθwillbecontainedinthestatisticand,inparticular,wewilltreatasequalanytwosamplesxandythatsatisfyT(x)=T(y)eventhoughtheactualsamplevaluesmaybedifferent.Thatwaywearriveatthedefinitionofsufficiency.TheinformationinXaboutθcanbediscussedintermsofpartitionsofthesamplespace.Definition1(sufficientpartition)SupposeforanysetAtinaparticularpartitionA=fAt;t2τgwehavePfX=xjX2Atgdoesnotdependonθ.ThenAisasufficientpartitionforθ.Note:Wehaveseenabovethatthepartitionisdefinedthroughasuitablestatistic.IfthestatisticTissuchthatitgeneratesasufficientpartitionofthesamplespacethenthestatisticitselfissufficient.3.2Example:X=(X1;X2;::;Xn)i.i.d.Bernoulliwithparameterθ,i.e.xi1−xiP(Xi=xi)=θ(1−θ);xi=0;1.ThepartitionA=(A0;A1;:::;An)wherex2ArPnifandonlyif(iff)i=1xi=r,issufficientforθ.Correspondingly,thestatisticT(X)=Pni=1Xiissufficientforθ.Proof:Atlecture.Notethatgiven