statisticalinference课件7.pdf
上传人:sy****28 上传时间:2024-09-14 格式:PDF 页数:5 大小:149KB 金币:18 举报 版权申诉
预览加载中,请您耐心等待几秒...

statisticalinference课件7.pdf

statisticalinference课件7.pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

18 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

7Lecture7:OrderStatistics7.1MotivationLetX=(X1;X2;:::;Xn)denotearandomsamplefromapopulationwithacontinuousdistributionfunctionFX.SinceFXisassumedtobecontinuous,theprobabilityofanytwooftheserandomvariablesassumingthesamevalueiszero.AfterreorderingthenvalueswegetX(1)≤X(2)≤···≤X(n))inwhich,asmentioned,the≤signcouldalsobereplacedby<.ThesevaluesarecollectivelytermedtheorderstatisticoftherandomsampleX=(X1;X2;:::;Xn).ThesubjectoforderstatisticsgenerallydealswithpropertiesofX(r)(r=1;2;:::;n)whichiscalledther-thorderstatistic.Orderstatisticsareparticularlyusefulinnonparametricstatisticsbecauseofthefol-lowing:Theorem7.1.(Probability-integraltransformation).IftherandomvariableXhasacontinuouscdfFXthentherandomvariableY=FX(X)hastheuniformprobabilitydistributionovertheinterval(0,1).Further,givenasampleX=(X1;X2;:::;Xn)ofni.i.d.randomvariableswithcdfFX,thetransformationU(r)=FX(X(r))producesarandomvariableU(r)whichisther-thorderstatisticfromtheuniformpopulationin(0,1),regardlessofwhatFXis,i.e.U(r)isdistribution-free.Proof:ItisyourtextbookandwasalsodiscussedintheintroductoryLecture1.Note:Theabovetheoremhasalsoanextremelyimportantpracticalapplicationinthegeneration(computersimulation)ofobservationsfromanyspecificcontinuousdistribu-tionfunction.Thereareseveralwell-developeduniformrandomnumbergeneratorsthatimplementmethodstogeneratesequencesofuniformin(0,1)pseudo-randomnum-bers.Thesenumbersarepseudosinceinfacttheyaregeneratedbyadeterministicalgo-rithm(thereforearenotrandom)butlookasrandom(hencethewordpseudo-random)inthesensethattheypassusualstatisticaltestsaboutrandomnessofthegeneratedse-quence.Everyprogramsystem(Fortran,SPLUS,C,SAS,etc.)hassuchuniformrandomnumbergeneratorsandwewillnotdiscusstheirspecificimplementationhere.WhatwewouldliketodiscussishowwecouldusetheseuniformrandomnumbergeneratorstogeneraterandomnumberswitharbitrarycontinuouscumulativedistributionfunctionFX:Theansweris:1)GenerateYasuniformlydistributedin(0,1)usingtheuniformrandomnumbergener