statisticalinference课件5.pdf
上传人:sy****28 上传时间:2024-09-14 格式:PDF 页数:7 大小:169KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

statisticalinference课件5.pdf

statisticalinference课件5.pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

5Lecture5:LikelihoodInference.Firstorderasymp-totics5.1WhyasymptoticsWerealizedthatfindingtheUMVUEforafixedsamplesizencouldbedifficultinsomecasesespeciallywhentheCRboundisnotattainable.Findingthemrequiressomeart,andthereisnoeasytofollowconstructivealgorithmfortheirdetermination.WhileweknowthatsometimetheMLEcouldbebiasedor,evenifnotunbiased,couldnotattaintheCRboundwhenoutsidetheexponentialfamilysetting,stilltheyaretypicallyeasy-to-constructand,asseenonmanyexamples,usuallytheUMVUEarejustabias-correctedMLE.Indeed,theUMVUEfortheprobabilityofsuccessinnindependentBernoulli¯¯n¯¯trialswasX(1−X)n−1whereastheMLEisX(1−X);theUMVUEfortheendpointn+1θofuniform(0;θ)distributionwasnX(n)whereastheMLEisX(n);theUMVUEfortheprobabilityofnooccurrencebasedonnindependentPoissonrandomvariableswas1nX¯¯(1−n)whereastheMLEisexp(−X):Thebias-correctionitselftendstobenegligibleasthesamplesizeincreases.ThereforetheUMVUE0sareeitherMLE0sor"almost"MLE0s.Hence,itisjustifiedtolookforastrongbackingofthepropertiesofMLE0sinageneralsetting.Thiscanbedoneusingasymptoticarguments,i.e.bylookingattheperformanceofMLE0swhenn−!1,i.e.bylettingtheamountofinformationbecomearbitrarilylarge.Statisticalfolkloresaysthenthat\nothingcanbeattheMLEasymptotically".5.2ConvergenceconceptsinasymptoticsWeremindsomestochasticconvergenceconceptsfirst.AnestimatorTnoftheparameterθissaidtobe:i)consistent(orweaklyconsistent)iflimPθ(jTn−θj>)=0n!1Pforallθ2Θandforeveryfixed>0.WedenotethisbyTn!θ.ii)stronglyconsistentifPθflimn!1Tn=θg=1forallθ2Θ.iii)mean-squareconsistentifMSEθ(Tn)−!n!10forallθ2Θ.Itisimportanttonotethatiftheestimatorismean-squareconsistentthenitisalsoconsistent.Thisrelationhasprobablythemostimportantpracticalconsequence.Thereasonisthatmostoftenweareinterestedinweakconsistencyandacommonmethodthatoftenworksinprovingit,isbyshowingmean-squareconsistencyfirst.Tojustifytherelationbetweenmean-squareconsistencyandconsistencywecanusetheChebyshevInequality.ItstatesthatforanyrandomvariableXandany>0