如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第三章风险与收益证券价值就是证券给投资者提供的现金流量的现值,求现值时的贴现率是投资者所要求的包含了风险在内的期望报酬率。通过风险与收益一章的学习,我们就可以确定现值计算中的贴现率是多少。(2)平均来讲,承担风险一定会得到相应的报酬,而且风险越大,报酬越高。表3—1给出了美国不同投资方向的收益和风险状况,不难看出风险与收益的相关关系。第一节风险与收益的概念Dt+(Pt—Pt-1)(二)收益率=————————公式(3—2)Pt-1(三)平均收益(四)无风险收益与风险溢价表3—21926—1997年各种证券投资的收益和风险二、风险(二)风险的测定(单项资产风险的测定)对于两个期望报酬率相同的项目,标准差越大,风险越大,标准差越小,风险越小。但对于两个期望报酬率不同的项目,其风险大小就要用标准离差率来衡量。(三)风险报酬率风险报酬和风险(用标准离差率表示)之间的关系:Rr=b•CV公式(3—8)其中:b—风险价值系数Rr—风险报酬率三、正态分布和标准差的含义美国1926—1997年普通股平均收益为13%,收益的标准差为20.3%。根据正态分布的特点,大约有68%的年收益率在-7.3%与33.3%之间(13%±20.3%),即72年中任何一年的收益率在-7.3%—33.3%范围内的概率为68%;大约有95%的年收益率在-27.6%与53.6%(13%±2×20.3%)之间,即72年中任何一年的收益率在-27.6%—53.6%范围内的概率为95%;大约有99%的年收益-47.9%与73.9%之间(13%±3×20.3%),即72年中任何一年的收益率在-27.6%—73.9%范围内的概率为99%。可以通过各种可能的收益率偏离期望收益率的标准化数值来计算收益率大于或小于某一特定数值的概率,标准化数值的计算公式为:Ri-RZ=————公式(3—9)σ第二节资产组合的风险与收益∑(RAi-RA)•(RBi-RB)Pi为正:两种资产期望收益率变动方向相同;∑(RAi-RA)•(RBi-RB)Pi为负:两种资产期望收益率变动方向相反;∑(RAi-RA)•(RBi-RB)Pi为零:两种资产期望收益率变动方向无关。两项资产组合的方差和标准差在各种资产的方差给定的情况下,若两种资产之间的协方差(或相关系数)为正,则资产组合的方差就上升,即风险增大;若协方差(或相关系数)为负,则资产组合的方差就下降,即风险减小。由此可见,资产组合的风险更多地取决于组合中两种资产的协方差,而不是单项资产的方差。表3—3两种完全负相关股票组合的收益与风险(二)多项资产组合的风险与收益由多种资产构成的组合中,只要组合中两两资产的收益之间的相关系数小于1,组合的标准差一定小于组合中各种资产的标准差的加权平均数。表3—4美国最近10年标准普尔500指数及一些重要证券的标准差公式(3—15)中第一项∑Wi2σi2是单项资产的方差,反映了单项资产的风险,即非系统风险;第二项∑∑WiWjσiσjρij是两项资产之间的协方差,反映了资产之间的共同风险,即系统风险。二、系统风险和非系统风险(三)投资组合的风险分散化原理表3—3资产组合数量与资产组合风险的关系图3—7资产组合数量与资产组合风险的关系第三节证券市场上收益与风险的描述一般是以一些代表性的股票指数作为市场投资组合,再根据股票指数中个别股票的收益率来估计市场投资组合的收益率。美国是以标准普尔500家股票价格指数作为市场投资组合。图3—8就是一个个股的超额期望收益率与市场组合的超额期望收益率相比较的例子。(超额期望收益率=期望收益率-无风险收益率,超额收益率就是风险报酬率)β系数的计算过程相当复杂,一般不由投资者自己计算,而由专门的咨询机构定期公布部分上市公司股票的β系数。表3—5中国部分股票β系数的估计值(二)资产组合的β系数βp=∑Wiβi公式(3—19)(二)单个证券的期望收益与风险报酬由于从长期来看,市场的平均收益高于平均的无风险收益,因此(Rm-RF)应该是个正数,或者说某种证券的期望收益与该种证券的β系数是线性正相关。CAPM模型用图来表示就是证券市场线(securitymarketline,SML)。SML的方程形式:Ri=RF+βi•(Rm-RF)SLM表明所有证券的期望收益率都应在这条线上。现在假设有两种股票X和Y未能正确定价,X股价偏低,Y股价偏高,如图所示:(三)资产组合的期望收益与风险风险与收益的练习题:b.对于小于或等于零的收益率,偏离期望收益率有(0%%-20%)/16.43%=-1.217个标准差。查正态概率分布表,可得到实际收益率小于或等于零的概率大约为11%。对于小于或等于10%的收益率,其偏离期望收益率有(10%-20%)/16.43%=-0.609个标准差。查正态概率分布表,可得到实际