如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
初中数学因式分解教案初中数学因式分解教案作为一位不辞辛劳的人民教师,时常会需要准备好教案,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写才好呢?以下是小编整理的初中数学因式分解教案,欢迎阅读,希望大家能够喜欢。初中数学因式分解教案1整式乘除与因式分解一.回顾知识点1、主要知识回顾:幂的运算性质:aman=am+n(m、n为正整数)同底数幂相乘,底数不变,指数相加.=amn(m、n为正整数)幂的乘方,底数不变,指数相乘.(n为正整数)积的乘方等于各因式乘方的积.=am-n(a≠0,m、n都是正整数,且m>n)同底数幂相除,底数不变,指数相减.零指数幂的概念:a0=1(a≠0)任何一个不等于零的数的零指数幂都等于l.负指数幂的概念:a-p=(a≠0,p是正整数)任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.也可表示为:(m≠0,n≠0,p为正整数)单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a+b)(a-b)=a2-b2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的.概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2初中数学因式分解教案2教学目标1、知识与技能会应用平方差公式进行因式分解,发展学生推理能力。2、过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。3、情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。重、难点与关键1、重点:利用平方差公式分解因式。2、难点:领会因式分解的解题步骤和分解因式的彻底性。3、关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来。教学方法采用“问题解决”的.教学方法,让学生在问题的牵引下,推进自己的思维。教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式。(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。【学生活动】动笔计算出上面的两道题,并踊跃上台板演。(1)(a+5)(a—5)=a2—52=a2—25;(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律。1、分解因式:a2—25;2、分解因式16m2—9n。【学生活动】从逆向思维入手,很快得到下面答案:(1)a2—25=a2—52=(a+5)(a—5)。(2)1