如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
运算定律教学反思运算定律教学反思身为一位优秀的教师,课堂教学是重要的任务之一,通过教学反思可以很好地改正讲课缺点,那么什么样的教学反思才是好的呢?下面是小编精心整理的运算定律教学反思,仅供参考,希望能够帮助到大家。运算定律教学反思1本单元运算定律是运算的基本性质,被誉为数学大厦的基石,学生在学习的过程会比较抽象化,概括化,在学习的过程中,帮助学生去理解每一个定律的内涵及运算意义。我在教学过程中,重视符合学生已有的认知特点和横向知识结构,以研究思想,发展学生的数学模型思想,培养学生合理选择算法的能力,发展思维的'灵活性。对于本单元的复习课,我首先充分了解学生的掌握情况,进行学情分析,帮助学生建立知识体系,形成逻辑思维能力,有条理清晰的掌握运算定律及每个定律的用法。如何选择合适的方法,在课堂上,我们师生共同归纳总结回忆,梳理知识点。对重难点,我重点强调,查漏补缺,接着让孩子们画思维导图,培养他们建立知识体系,用自己的方式来总结知识点。学习真正学会了什么,其实是形成自己的知识体系,学会方法和思想。思考:这一单元的学习我不断思考,运算定律对于孩子来说比较抽象,为了寻找答案,孩子们为自己设计了一条丰富生动的探索之路。课上,我们师生成为学习伙伴,在探究的过程中相互扶持,相互促进,不仅寻找问题的答案,更重要的是摸索出的一条研究的路径。其实,我们常常在教学中很有很多担心,担心学生找不到学习的方向,于是我们在教学中不停的敲黑板:看这是重点,快快看过来;担心学生够不到目标,所以我们在学习过程中设一个又一个问题,铺成一级又一级的台阶,扶着他们前行。担心学生走弯路,我们为他设计了一条康庄大道,连路上的小石子也要细细的扫开。而把握好课堂生成的资源,碰撞出思维的火花,促进新的教学内容生成,实现教学动态灵活发展并没有达到。这是我需要不断反思以及努力改进的方向。运算定律教学反思2对于小学生来说,计算教学是数学教学的基础,是教学中的一个重点问题,也是一个难点。在计算教学中,不仅要使学生能正确合理的计算,还要掌握灵活的计算方法,何老师这节课正是在学生掌握了运算定律的基础上,要求学生灵活运用这些定律使计算简便。我觉得这节课有一大特点:就是实。“实”体现在:1、课前复习扎实有效。因为数学课的课前复习很重要,它可以为新课做充分的铺垫与衔接,把前面零散的认知集中一点,便于学生在新课中类比活应用。2、课中首先将所有运算法则一一复习,再在复习过后通过练习巩固,加深印象。3、课堂中的学生自主学习具有时效性,让学生在独立完成作业后进行汇报,通过自己与别人的进行对比,达到互相补足,达到了人人参与的`目的。不足之处在于:1、教师对于“班班通”的运用不是很熟悉;2、我感觉教师出示的计算题的计算量相对有点大;3、教师对于后面习题的讲解不够细致。改进建议:在此,我提出一些自己不成熟的建议:1、我觉得教师在计算题讲解过程中,可以出示计算过程;2、可以适当的减少计算题的题目,让所有学生能完成练习。运算定律教学反思3《加法的运算定律》是一节概念课,由于四年级的学生认知和思维水平还比较低,抽象思维比较弱,对于他们来说规律的理解历来是教学的难点。为了解决这个难点,我做了以下的努力:1.在解决问题的过程中探寻规律。英国教育家斯宾塞说过:“应引导学生进行探寻,自己去推论,对他们讲的应该尽量少一些,而引导让他们说出自己的发现应该尽量多一些。”在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。接着,我启发道:这样的等式有很多,你可以用你们喜欢的方式来表示。这一开放性问题的出现,学生兴趣盎然,课堂气氛十分的活跃。经过一番合作,学生的探究结果出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;a+b=b+a等等。我追问,如果一直这样说下去,能说完吗?(学生马上回答我:不能。)这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算定律。你能给它起个名字吗?然后指着板书,有学生说叫“加法交换律”。我追问道:为什么?(生答:因为这是两个数相加,只交换位置)。接着,让学生用同样的方法探究加法结合律。整个过程教师都是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的'研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。2、加法结合律的教学的看法在加法结合律的教学过程中,教师在教学的时候延续了加法交换律的教学方式,通过实际问题的解决,得出等式;再给出两组式子,通过计算得到也能用等于号连接;然后学生自己举例。这样的教学让学生感受加法结合律的特点: