纳米复合材料.ppt
上传人:天马****23 上传时间:2024-09-10 格式:PPT 页数:38 大小:1.5MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

纳米复合材料.ppt

纳米复合材料.ppt

预览

免费试读已结束,剩余 28 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

4-7复合材料的性能(propertiesofcomposites)4-7-1复合材料的复合效应(principleofcombinedaction)1.复合材料各组元(相)相互作用基体:①将增强材料粘合成整体并使增强材料的位置固定。②增强材料间传递载荷,并使载荷均匀,自身承受一定载荷。③保护增强体免受各种损伤。④很大程度上决定成型工艺方法及工艺参数选择。⑤决定部分性能。增强体:主要承受绝大部分载荷、增强、增韧功能体:赋予一定功能界面相层:复合材料产生组合力学及其它性能,复合效应产生的根源PMC界面区域示意图1-外力场;2-树脂基体;3-基体表面区;4-相互渗透区;5-增强剂表面区;6-增强剂2、复合效应混合效应:平均效应或组份效应,是组份材料性能取长补短共同作用的结果,是组份材料性能比较稳定的总体反应,局部的挠动、薄弱环节、界面、工艺因素等通常对混合效应没有明显的作用,表现为各种形式的混合律。协同效应:①复合材料的本质特征,使复合材料的性能与组份材料相比,发生飞跃式提高,甚至具有组份材料没有的性能,这些潜在性能是研制开发新材料的源泉。复合材料追求的就是这种协同效应。②对微观非均匀性、薄弱环节、界面、制备工艺,甚至某些偶然因素都十分敏感。3.协同效应:界面效应、尺寸效应、量子尺寸效应、乘积效应、系统效应、混杂效应、诱导效应等。(1)混合律Xc=XmVm+Xf1V1+Xf2V2+……复合材料性能与各组元性能及分量的关系(线性关系)。组份效应:各组元性能确定,相对组成作为变量,不考虑组份的几何形状、分布状态和尺度等影响。相对组成通常用体积分数和质量分数来表达。复合材料的固有性质是指各相之间不相互作用所表现出来的材料性质,如密度C和比热容Cc等,属于固有性质的物理量,都应服从混合律,如:(2)几何尺寸效应复合材料性能不仅与各组元分量有关,还强烈依赖于增加相的几何形状、尺寸、排布与分布状态。复合材料中纤维上受力状态和界面受力状态,随纤维的长径比变化而变化,见图4-106、4-107,表4-40。临界长度lc和临界长径比lc/d的概念见书P419-420,表4-41纳米量子尺寸效应:固体物理研究表明,固体颗粒尺寸减少到某一临界值时(一般为0.1m或100nm),颗粒的某些性质(如光、电、磁、热、化学特性等)会发生质的变化,呈现与物体宏观状态下差异很大的特性。具有显著的量子尺寸效应。纳米复合材料是指分散相尺度至少有一维小于102nm量级的复合材料。由于其纳米量子尺寸效应,大的比表面积及强的界面相互作用,使纳米复合材料的性能远优于相同组份常规复合材料的物理力学性能。纳米复合材料是获得高性能复合材料的重要途径之一。(3)界面效应(interfaceeffect)复合材料的绝大部分性能很大程度上取决于界面层的状态和性质,材料的破坏与失效机制往往是从界面破坏与失效开始的。复合材料的力学性能,对界面层的状态和性质,界面缺陷都十分敏感,并很大程度上取决于界面层的状态和性质。几乎所有协同效应(复合效应的本质特征)都是由界面层的存在带来的,这就是所谓界面效应的内涵。而界面效应的表现方式却多种多样。从数学上可以由混合律和二次混合律加以简述(见图4-108,4-109)1).界面上力的传递与残余应力2).复合材料界面破坏机制①破坏的来源4)乘积效应(X/Y)(Y/Z)=X/Z(见表4-42)主要表现在功能复合材料中,详见P4215)其它复合效应“界面诱导效应、混杂效应、共振效应,一般了解见P4224-7-2复合材料的力学性能(mechanicalpropertiesofcomposites)(1)纵向载荷弹性行为(ElasticBehavior–longitudinalloading)(2)横向载荷弹性行为(ElasticBehavior-transverseloading)(3)不连续短纤增强单向板纵向拉伸强度(Longitudinaltensilestrengthofdiscontinuousandalignedfiber(composites)(4)单向板纵向拉伸的三种破坏模式:①基体断裂;②界面脱粘;③纤维断裂,(5)单向板横向拉伸强度单向板横向拉伸的三种破坏模式:①基体破坏;②界面脱粘;③纤维破坏单向板复合材料的拉伸强度与拉伸方向关系,图4-1162.复合材料的冲击韧性冲击韧性是复合材料的重要性能,可由①冲击强度;②断裂韧性Gc;③冲击后的压缩强度(CAI)来表征。冲击实验中的典型加载历程见图4-118冲击过程中裂纹扩展模式见图4-119,受界面显著影响冲击过程的能量吸收包括:①基体变形和开裂;②纤维破坏;