如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
通信原理1通信原理第12章正交编码与伪随机序列2第12章正交编码与伪随机序列引言正交编码与伪随机序列在数字通信技术中都是十分重要的。正交编码不仅可以用作纠错编码,还可以用来实现码分多址通信,目前已经广泛用于蜂窝网中。伪随机序列在误码率测量、时延测量、扩谱通信、密码及分离多径等方面都有着十分广泛的应用。因此,本章将在简要讨论正交编码概念之后,着重讨论伪随机序列及其应用。3第12章正交编码与伪随机序列12.2正交编码12.2.1正交编码的基本概念正交性若两个周期为T的模拟信号s1(t)和s2(t)互相正交,则有Ts1(t)s2(t)dt00同理,若M个周期为T的模拟信号s1(t),s2(t),…,sM(t)构成一个正交信号集合,则有Ts1(t)s2(t)dt0ij;i,j=1,2,…,M0互相关系数对于二进制数字信号,用一数字序列表示码组。这里,我们只讨论二进制且码长相同的编码。这时,两个码组的正交性可用如下形式的互相关系数来表述。4第12章正交编码与伪随机序列设长为n的编码中码元只取值+1和-1,以及x和y是其中两个码组:x(x1,x2,x3,,xn)y(y1,y2,y3,,yn)其中xi,yi(1,1),i1,2,,n则x和y间的互相关系数定义为n1(x,y)xiyini1若码组x和y正交,则必有(x,y)=0。5第12章正交编码与伪随机序列正交编码例如,下图所示4个数字信号可以看作是如下4个码组:s1(t)s1(t):(1,1,1,1)s2(t):(1,1,1,1)s(t):(1,1,1,1)s(t)32s4(t):(1,1,1,1)按照互相关系数定义式计算容易得知,s3(t)这4个码组中任意两者之间的相关系数都为0,即这4个码组两两正交。我们把这种两两正交的编码称为正交编码。s4(t)6第12章正交编码与伪随机序列自相关系数:类似上述互相关系数的定义,可以对于一个长为n的码组x定义其自相关系数为n1x(j)xixij,j0,1,,(n1)ni1式中,x的下标按模n运算,即有xn+kxk。例如,设x(x1,x2,x3,x4)(1,1,1,1)则有412x(0)xi14i11411x(1)xixi1(x1x2x2x3x3x4x4x1)(1111)04i144141x(2)xixi2(x1x3x2x4x3x1x4x2)14i14141x(3)xixi3(x1x4x2x1x3x2x4x3)074i14第12章正交编码与伪随机序列用二进制数字表示互相关系数在二进制编码理论中,常采用二进制数字“0”和“1”表示码元的可能取值。这时,若规定用二进制数字“0”代替上述码组中的“+1”,用二进制数字“1”代替“-1”,则上述互相关系数定义式将变为AD(x,y)AD式中,A—x和y中对应码元相同的个数;D—x和y中对应码元不同的个数。例如,按照上式规定,上面例子可以改写成s1(t):(0,0,0,0)s2(t):(0,0,1,1)s3(t):(0,1,1,0)s4(t):(0,1,0,1)8第12章正交编码与伪随机序列用二进制数字表示自相关系数上式中,若用x的j次循环移位代替y,就得到x的自相关系数x(j)。具体地讲,令x(x1,x2,,xn)y(x1j,x2j,A,xnD,x1,x2,xj)(x,y)代入定义式AD就得到自相关系数x(j)。9第12章正交编码与伪随机序列超正交码和双正交码超正交码:相关系数的取值范围在1之间,即有-1+1。若两个码组间的相关系数<0,则称这两个码组互相超正交。如果一种编码中任两码组间均超正交,则称这种编码为超正交码。例如,在上例中,若仅取后3个码组,并且删去其第一位,构成如下新的编码:s1'(t):(0,1,1)s2'(t):(1,1,0)s3'(t):(1,0,1)则不难验证,由这3个码组所构成的编码是超正交码。10第12章正交编码与伪随机序列双正交编码由正交编码和其反码便可以构成双正