如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
在新教材中出现了一类题型,它要求学生通过对题目中所给出的一些“数或图形”的特点,分析其规律,从而给出结论,这就是所谓“探索规律题”。为了帮助教师和学生在教学中能更好地解决此类问题,本人对此类问题作了一些探讨,和老师同学们共同学习。一、“探索规律题”的分类在现行的新教材中,“探索规律题”一般可以分为以下几种类型:第一类是纯文字型题;第二类是数字型题;第三类是几何图形型;第四类是数字与图形结合型;第五类是杂题型。而在教材中所出现的以前几种为主,下面主要对前几种类型进行解法探讨。二、“探索规律题”的解法探讨第一类:文字型题例1:盒子里放了一只球,一位魔术师第一次从盒子里将这只球取出,变成4只球后放回盒子里;第二次从盒子里取出2只球,将每只球各变成4只球后,放进盒子里;……;第十次从盒子里取出10只球,将每只球各变成4只球的放回盒子里。问:这时盒子里共有多少只球?分析:在此题中,变化的量有以下几个:①操作的次数,即取球的次数;②取出的球数;③每次取出球以后,盒中剩余的球数;④每次放回的球数⑤盒中每次增加的球数;⑥每次操作结束后盒子中的球数。这每一个量都随着操作次数的变化而变化,正因如此,把每次操作的情况列成表格,在表格中的数据上寻找出数据的规律:操作次数取出球数盒中剩球数放回的球数盒中增加球数总球数110434222861033712919………………1010ABCD在上表中,若能把A、B、C、D这四处的数据找到,那么此题也就完成了解题。从表中容易得到结果的是B为4N、C为3N。因此对所要求的D的结果就显而易见了:每次变化后的球的数目分别为:1、1+3=4、10=1+3+6、1+3+6+9=19、1+3+6+9+12=31……1+3+6+9+12+15+18+21+24+27+30=166。即D为166。说明:解决此类问题时,应将每一过程产生的结果用表格把数据一一列出,再观察数据的变化,从变化的数据中寻找规律,从而得出结论。例2:有10个朋友聚会,见面时如果每人和其余的每个人只握一次手,那么10个人共握手多少次?若N个朋友呢?分析:学生必须明白:1)每两个人握一次手;2)甲和乙握手的结果与乙和甲握手的结果只能看成是一种结果。3)若设这10个人为A1、A2、A3、A4、A5、A6、A7、A8、A9、A10。则A1与其它9个人握9次手;A2则与剩下的8个人握8次手;A3则与剩下的7个人握7次手;……A9与A10握1次手。因此,所有握手的次数就是9+8+7+6+5+4+3+2+1=45(次)。说明:解决此类问题时,应将出现的各种结果按一定规律一一给出,从而整理出所有结果来。第二类:数字型题例3:观察下面依次排列的一列数,它的排列规律是什么?请接着写出后面的3个数。你能说出第100个数、第2004个数、第10000个数吗?①2,-2,2,-2,2,-2,……②-1,3,-5,7,-9,11,……③-,,……,-,分析:①容易发现这一窜数字是正负相间、绝对值都等于2的数构成的,即第奇数个数字是2,第偶数个数是-2。因此接下来的三个数就是2,-2,2。第100个数是-2,第2004个数是-2,第10000个数是-2。②容易发现这一窜数字除了符号有变化外,数字都是奇数;符号是一负一正相间;(第奇数个数是负的,第偶数个数是正的。因此,符号的确定可以用(-1)N来作为每一个数的系数。而奇数常常用(2N-1)来表示,固此数列的第N个数可以用(-1)N(2N-1)来表示,原数列中的接下来的三个数为:-13,15,-17。第100个数为199,第2004个数为4007,第10000个数为19999。③容易发现此数列的符号特征与第2小题的符号特征一样,可以用(-1)N来表示。而每一个分数可以看成是偶数的倒数,即,因此,此数列中的第N个数可表示为(-1)N,故,接下来的三个数为,-,。第100个数为,第2004个数为,第10000个数为。说明:此例中的数字规律学生寻找起来不是很困难的,只须了解一系特殊数列的表示方法就可以了,如奇数数列、偶数数列的表示方法;当然,符号的表示也是要求掌握的。例4:研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52请你将找出的规律用公式表示出来:▁▁▁▁▁这个公式是否对全体整数适用?分析:在第一个式子中去寻找“1”;在第二个式子中去寻找“2”……;在第N个式;子中去寻找“N”。同时,在相应的式子中寻找与“1”“2”……、、、“N”有关的数字。若发现式子中的“1”“2”……、、、“N”的位置是个固定的位置,则第N个式子中的“N”就在“1”“2”……、的位置上,相应的“N+1”“N-1”等其它的与N有关的数字就因、、、规律式子中的具体情况而定了。此题中各式的第一