如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
习题十二1.写出下列级数的一般项:1111(1)357;xxxxx2(2)2242462468;a3a5a7a9(3)3579;1Un解:(1)2n1;nx2Un2n!!(2);a2n1U1n1n(3)2n1;2.求下列级数的和:1xn1xnxn1(1)n1;n22n1n(2)n1;11123(3)555;1unxn1xnxn11112xn1xnxnxn1解:(1)11111Sn2xx1x1x2x1x2x2x311xn1xnxnxn11112xx1xnxn1从而11limSnn2xx12xx1因此,故级数的和为Un2n1n1n(2)因为nS32214332n5443n2n1n1nn2n112112n2n1从而limS12n12所以n,即级数的和为.111Sn5525n11n15511511n145(3)因为11limSn从而n4,即级数的和为4.3.判定下列级数的敛散性:n1n(1)n1;11111661111165n45n1(2);222232n1n133n(3)3333;11115535n5(4);S2132n1nnn11解:(1)limSn从而n,故级数发散.11111111S1n5661111165n45n111155n1(2)11limSn从而n5,故原级数收敛,其和为5.2q(3)此级数为3的等比级数,且|q|<1,故级数收敛.1UnlimU10n5n(4)∵,而n,故级数发散.4.利用柯西审敛原理判别下列级数的敛散性:1n1cosnxn2n(1)n1;(2)n1;1113n13n23n3(3)n1.解:(1)当P为偶数时,UUUn1n2npn2n3n4np11111n1n2n3np1111n1n2n3np111111n1n2n3np2np1np1n1当P为奇数时,UUUn1n2npn2n3n4np11111n1n2n3np1111n1n2n3np11111n1n2n3np1np1n1因而,对于任何自然数P,都有11UUUn1n2npn1n,1N1UUU∀ε>0,取,则当n>N时,对任何自然数P恒有n1n2np成立,由1n1n柯西审敛原理知,级数n1收敛.(2)对于任意自然数P,都有UUUn1n2npcosn1xcosn2xcosnpx2n12n22np1112n12n22np1112n1p21121112n2p12n1log2于是,∀ε>0(0<ε<1),∃N=,当n>N时,对任意的自然数P都有UUUn1n2np成立,由柯西审敛原理知,该级数收敛.(3)取P=n,则UUUn1n2np1111113n113n123n1332n132n232n3113n1132n1n6n1