人教版高中数学《集合》全部教案.doc
上传人:qw****27 上传时间:2024-09-10 格式:DOC 页数:40 大小:1.3MB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

人教版高中数学《集合》全部教案.doc

人教版高中数学《集合》全部教案.doc

预览

免费试读已结束,剩余 30 页请下载文档后查看

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第一章集合与简易逻辑第一教时教材:集合的概念目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。过程:一、引言:(实例)用到过的“正数的集合”、“负数的集合”如:2x-1>3x>2所有大于2的实数组成的集合称为这个不等式的解集。如:几何中,圆是到定点的距离等于定长的点的集合。如:自然数的集合0,1,2,3,……如:高一(5)全体同学组成的集合。结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。指出:“集合”如点、直线、平面一样是不定义概念。二、集合的表示:{…}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R集合的三要素:1。元素的确定性;2。元素的互异性;3。元素的无序性(例子略)三、关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作aA,相反,a不属于集A记作aA(或aA)例:见P4—5中例四、练习P5略五、集合的表示方法:列举法与描述法列举法:把集合中的元素一一列举出来。例:由方程x2-1=0的所有解组成的集合可表示为{1,1}例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}描述法:用确定的条件表示某些对象是否属于这个集合的方法。语言描述法:例{不是直角三角形的三角形}再见P6例数学式子描述法:例不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}或{x:x-3>2}再见P6例六、集合的分类1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合例题略3.空集不含任何元素的集合七、用图形表示集合P6略八、练习P6小结:概念、符号、分类、表示法九、作业P7习题1.1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。过程:复习:(结合提问)1.集合的概念含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念例一用适当的方法表示下列集合:平方后仍等于原数的数集解:{x|x2=x}={0,1}比2大3的数的集合解:{x|x=2+3}={5}不等式x2-x-6<0的整数解集解:{xZ|x2-x-6<0}={xZ|-2<x<3}={-1,0,1,2}过原点的直线的集合解:{(x,y)|y=kx}方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)|4x2+9y2-4x+12y+5=0}={(x,y)|(2x-1)2+(3y+2)2=0}={(x,y)|(1/2,-2/3)}使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xR}处理苏大《教学与测试》第一课含思考题、备用题处理《课课练》作业《教学与测试》第一课练习题第三教时教材:子集目的:让学生初步了解子集的概念及其表示法,同时了解等集与真子集的有关概念.过程:一提出问题:现在开始研究集合与集合之间的关系.存在着两种关系:“包含”与“相等”两种关系.二“包含”关系—子集1.实例:A={1,2,3}B={1,2,3,4,5}引导观察.结论:对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,则说:集合A包含于集合B,或集合B包含集合A,记作AB(或BA)也说:集合A是集合B的子集.2.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB(或BA)注意:也可写成;也可写成;也可写成;也可写成。3.规定:空集是任何集合的子集.φA三“相等”关系实例:设A={x|x2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。AA②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB③空集是任何非空集合的真子集。④如果AB,BC,那么AC证明:设x是A的任一元素,则xAAB,xB又BCxC从而AC同样;如果AB,BC,那么AC⑤如果AB同时BA那么A=B四例题:P8例一,例二(略)练习P9补充例题《课课练》课时2P3五小结:子集、真子集的概念,等