人教版高中数学《函数》全部教案优秀名师资料(完整版)资料.doc
上传人:天马****23 上传时间:2024-09-10 格式:DOC 页数:204 大小:7.1MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

人教版高中数学《函数》全部教案优秀名师资料(完整版)资料.doc

人教版高中数学《函数》全部教案优秀名师资料(完整版)资料.doc

预览

免费试读已结束,剩余 194 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版高中数学《函数》全部教案优秀名师资料(完整版)资料(可以直接使用,可编辑优秀版资料,欢迎下载)第二章函数第一教时教材:映射目的:要求学生了解映射和一一映射的概念,为今后在此基础上对函数概念的理解打下基础。过程:一、复习:以前遇到过的有关“对应”的例子1看电影时,电影票与座位之间存在者一一对应的关系。2对任意实数a,数轴上都有唯一的一点A与此相对应。3坐标平面内任意一点A都有唯一的有序数对(x,y)和它对应。4任意一个三角形,都有唯一的确定的面积与此相对应。ABABABAB二、提出课题:一种特殊的对应:映射乘以2(1)(2)(3)(4)引导观察,分析以上三个实例。注意讲清以下几点:1.先讲清对应法则:然后,根据法则,对于集合A中的每一个元素,在集合B中都有一个(或几个)元素与此相对应。2.对应的形式:一对多(如①)、多对一(如③)、一对一(如②、④)3.映射的概念(定义):强调:两个“一”即“任一”、“唯一”。4.注意映射是有方向性的。5.符号:f:AB集合A到集合B的映射。6.讲解:象与原象定义。再举例:1A={1,2,3,4}B={3,4,5,6,7,8,9}法则:乘2加1是映射2A=N+B={0,1}法则:B中的元素x除以2得的余数是映射3A=ZB=N*法则:求绝对值不是映射(A中没有象)4A={0,1,2,4}B={0,1,4,9,64}法则:f:ab=(a1)2是映射三、一一映射观察上面的例图(2)得出两个特点:1对于集合A中的不同元素,在集合B中有不同的象(单射)2集合B中的每一个元素都是集合A中的每一个元素的象(满射)即集合B中的每一个元素都有原象。fAB结论:(见P48)从而得出一一映射的定义。abcdmnpq例一:A={a,b,c,d}B={m,n,p,q}它是一一映射例二:P48例三:看上面的图例(2)、(3)、(4)及例1、2、4辨析为什么不是一一映射。四、练习P49五、作业P49—50习题2.1《教学与测试》P33—34第16课第二教时教材:函数概念及复合函数目的:要求学生从映射的观点去理解函数的概念,明确决定函数的三个要素。过程:一、复习:(提问)1.什么叫从集合到集合上的映射?2.传统(初中)的函数的定义是什么?初中学过哪些函数?二、函数概念:1.重复初中时讲的函数(传统)定义:“定义域”“函数值”“值域”的定义。2.从映射的观点定义函数(近代定义):1函数实际上就是集合A到集合B的一个映射f:AB这里A,B非空。2A:定义域,原象的集合B:值域,象的集合(C)其中CBf:对应法则xAyB3函数符号:y=f(x)——y是x的函数,简记f(x)3.举例消化、巩固函数概念:见课本P51—52一次函数,反比例函数,二次函数注意:1务必注意语言规范2二次函数的值域应分a>0,a<0讨论4.关于函数值f(a)例:f(x)=x2+3x+1则f(2)=22+3×2+1=11注意:1在y=f(x)中f表示对应法则,不同的函数其含义不一样。2f(x)不一定是解析式,有时可能是“列表”“图象”。3f(x)与f(a)是不同的,前者为函数,后者为函数值。三、函数的三要素:对应法则、定义域、值域只有当这三要素完全相同时,两个函数才能称为同一函数。例一:判断下列各组中的两个函数是否是同一函数?为什么?1.解:不是同一函数,定义域不同2。解:不是同一函数,定义域不同3。解:不是同一函数,值域不同4.解:是同一函数5.解:不是同一函数,定义域、值域都不同例二:P55例三(略)四、关于复合函数设f(x)=2x3g(x)=x2+2则称f[g(x)](或g[f(x)])为复合函数。f[g(x)]=2(x2+2)3=2x2+1g[f(x)]=(2x3)2+2=4x212x+11例三:已知:f(x)=x2x+3求:f()f(x+1)解:f()=()2+3f(x+1)=(x+1)2(x+1)+3=x2+x+3例四:课本P54例一五、小结:从映射观点出发的函数定义,符号f(x)函数的三要素,复合函数六、作业:《课课练》P48-50课时2函数(一)除“定义域”等内容第三教时教材:定义域目的:要求学生掌握分式函数、根式函数定义域的求法,同时掌握表示法。过程:一、复习:1.函数的定义(近代定义)2.函数的三要素今天研究的课题是函数的定义域—自变量x取值的集合(或者说:原象的集合A)叫做函数y=f(x)的定义域。二、认定:给定函数时要指明函数的定义域。对于用解析式表示的函数如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取
立即下载