21 1参数方程的概念 课件(人教A选修4-4).ppt
上传人:qw****27 上传时间:2024-09-12 格式:PPT 页数:17 大小:494KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

21 1参数方程的概念 课件(人教A选修4-4).ppt

211参数方程的概念课件(人教A选修4-4).ppt

预览

免费试读已结束,剩余 7 页请下载文档后查看

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

都在这条曲线上2.参数的意义是联系变数x,y的桥梁,可以是有意义或意义的变数,也可以是的变数.[例1]如图,△ABP是等腰直角三角形,∠B是直角,腰长为a,顶点B、A分别在x轴、y轴上滑动,求点P在第一象限的轨迹的参数方程.[思路点拨]此类问题关键是参数的选取.本例中由于A、B的滑动而引起点P的运动,故可以OB的长为参数,或以角为参数,不妨取BP与x轴正向夹角为参数来求解.求曲线参数方程的主要步骤第一步,画出轨迹草图,设M(x,y)是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x,y与参数的关系比较明显,容易列出方程;二是x,y的值可以由参数唯一确定.例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的“有向距离”、直线的倾斜角、斜率、截距等也常常被选为参数.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.2.选取适当的参数,把直线方程y=2x+3化为参数方程.参数方程是曲线方程的另一种表达形式,点与曲线位置关系的判断,与平面直角坐标方程下的判断方法是一致的.3.曲线(x-1)2+y2=4上的点可以表示为()A.(-1+cosθ,sinθ)B.(1+sinθ,cosθ)C.(-1+2cosθ,2sinθ)D.(1+2cosθ,2sinθ)解析:将点的坐标代入方程,使方程成立的即可.答案:D点击下图进入