如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
17.1勾股定理(第一课时)教学目标:知识与技能:探索直角三角形三边关系,了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。过程与方法:(1)、经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识。(2)、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的能力,并体会数形结合和特殊到一般的思想方法。上课思路1.笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.1.观察图1-1(图中每个小方格代表一个单位面积)(定理命名).约2000年前,代算书《周髀算经》中就记载了公元前1120年我国古人发现的“勾三股四弦五”.当时把较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.“勾三股四弦五”的意思是,在直角三角形中,如果勾为3,股为4,那么弦为5.这里.人们还发现,勾为6,股为8,那么弦一定为10.勾为5,股为12,那么弦一定为13等.所以我国称它为勾股定理.(我国古代的赵爽对勾股定理的证明有特别的贡献)西方国家称勾股定理为毕达哥拉斯定理。美国第二十任总统伽菲尔德四:课堂小结作业