2014北京高考数学真题(文科)及答案.pdf
上传人:文库****品店 上传时间:2024-09-10 格式:PDF 页数:12 大小:1.3MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2014北京高考数学真题(文科)及答案.pdf

2014北京高考数学真题(文科)及答案.pdf

预览

免费试读已结束,剩余 2 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2014北京高考数学真题(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项1.(5分)若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4}B.{0,4}C.{1,2}D.{3}2.(5分)下列函数中,定义域是R且为增函数的是()A.y=e﹣xB.y=xC.y=lnxD.y=|x|3.(5分)已知向量=(2,4),=(﹣1,1),则2﹣=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)4.(5分)执行如图所示的程序框图,输出的S值为()A.1B.3C.7D.155.(5分)设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)已知函数f(x)=﹣logx,在下列区间中,包含f(x)零点的区间是()2A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)7.(5分)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7B.6C.5D.48.(5分)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟二、填空题共6小题,每小题5分,共30分.9.(5分)若(x+i)i=﹣1+2i(x∈R),则x=.10.(5分)设双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),则C的方程为.11.(5分)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为.12.(5分)在△ABC中,a=1,b=2,cosC=,则c=;sinA=.13.(5分)若x,y满足,则z=x+y的最小值为.14.(5分)顾客请一位工艺师把A,B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由师傅进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序粗加工精加工时间原料原料A915原料B621则最短交货期为个工作日.三、解答题,共6小题,满分80分,解答应写出文字说明,演算步骤或证明过程.15.(13分)已知{a}是等差数列,满足a=3,a=12,等比数列{b}满足b=4,b=20.n14n14(1)求数列{a}和{b}的通项公式;nn(2)求数列{b}的前n项和.n16.(13分)函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x,y的值;00(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.17.(14分)如图,在三棱柱ABC﹣ABC中,侧棱垂直于底面,AB⊥BC,AA=AC=2,BC=1,E,F分别是AC,BC111111的中点.(Ⅰ)求证:平面ABE⊥平面BBCC;11(Ⅱ)求证:CF∥平面ABE;1(Ⅲ)求三棱锥E﹣ABC的体积.18.(13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:排号分组频数1[0,2)62[2,4)83[4,6)174[6,8)225[8,10)256[10,12)127[12,14)68[14,16)29[16,18)2合计100(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(Ⅱ)求频率分布直方图中的a,b的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写结论)19.(14分)已知椭圆C:x2+2y2=4.(Ⅰ)求椭圆C的离心率;(Ⅱ)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.20.(13分)已知函数f(x)=2x3﹣3x.(Ⅰ)求f(x)在区间[﹣2,1]上的最大值;(Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(Ⅲ)问过点A(﹣1,2),B