16.1.1 二次根式的概念-人教版数学八年级下册分层作业(含答案).pdf
上传人:文库****品店 上传时间:2024-09-11 格式:PDF 页数:13 大小:2.9MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

16.1.1 二次根式的概念-人教版数学八年级下册分层作业(含答案).pdf

16.1.1二次根式的概念-人教版数学八年级下册分层作业(含答案).pdf

预览

免费试读已结束,剩余 3 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版初中数学八年级下册16.1.1二次根式的概念分层作业夯实基础篇一、单选题:1.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【答案】D【分析】二次根式必须满足两个条件:被开方数大于等于0,且根指数必须是2;根据上述信息,对题中的各个式子进行判断即可.【详解】解:①中>0,故是二次根式;②中3>0,故是二次根式;③中>0,故是二次根式;④是立方根,故不是二次根式;⑤中>0,故是二次根式;⑥中x>1,则1-x<0,故不是二次根式;⑦中7>0,故是二次根式;根据二次根式的定义可知,①②③⑤⑦是二次根式,共5个,故选:D.【点睛】本题主要考查的是二次根式的判断,掌握二次根式的定义是解题的关键.一般地,我们把形如的式子叫做二次根式.2.若式子有意义,则的取值范围是()A.B.C.或D.且【答案】D【分析】根据二次根式有意义的条件,分式有意义的条件列出不等式组,解不等式组即可求解.【详解】解:∵式子有意义,∴,解得且,故选:D.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,根据题意列出不等式是解题的关键.3.使二次根式有意义的的取值范围是()A.B.C.D.【答案】B【分析】根据二次根式和分式有意义的条件得出,求出不等式的解集即可.【详解】解:由题意得:,解得,故选B.【点睛】本题考查了二次根式有意义的条件,解决本题的关键是掌握二次根式中被开方数不能是负数.4.若代数式有意义,则实数x的取值范围是()A.B.C.D.且【答案】D【分析】根据二次根式与分式有意义的条件列出不等式组,解不等式组即可求解.【详解】解:∵代数式有意义,∴解得:且故选D【点睛】本题考查了二次根式与分式有意义的条件,解一元一次不等式组,根据题意列出不等式组是解题的关键.5.的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间【答案】D【分析】首先确定的范围,根据二次根式的性质即可得出答案.【详解】解:,.故选:D.【点睛】本题考查了有理数的大小比较和二次根式的性质的应用,知道:,,.6.若二次根式有意义,且是一个完全平方式,则满足条件的值为()A.B.C.12D.【答案】D【分析】根据二次根式有意义,可得的取值范围,根据完全平方公式即可求解.【详解】解:二次根式有意义,∴,即,又∵是一个完全平方式,即或,∴或,∴或,且,故选:.【点睛】本题主要考查二次根式有意义,完全平方公式的综合应用,掌握二次根式有意义的条件,完全平方公式的中一次项系数的确定方法是解题的关键.7.若二次根式有意义,且关于分式方程﹣3=有正整数解,则符合条件的整数m的和是()A.5B.3C.﹣2D.0【答案】A【分析】根据二次根有意义,可得m≤4,解出关于x的分式方程,根据解为正整数,进而确定m的值,注意增根时m的值除外,然后求和即可.【详解】解:∵二次根式有意义,∴,∴m≤4,去分母得,,解得,x=,∵关于x的分式方有正整数解,∴m=-2,1,4,又∵x=1是增根,即当x=1时,,解得:,∴,∴m可以为1,4,∴其和为,故A正确.故选:A.【点睛】本题考查二次根式的意义、分式方程的解法,以及分式方程产生增根的条件等知识,理解正整数解,整数m的意义是正确解答的关键.二、填空题:8.当______时,式子有意义.【答案】##【分析】根据二次根式有意义的条件得,进行计算即可得.【详解】解:由题意得,,即当时,式子有意义,故答案为:.【点睛】本题考查了二次根式有意义的条件,解题的关键是掌握二次根式有意义的条件,正确计算.9.若二次根式有意义,则x的取值范围是______________.【答案】【分析】根据二次根式和分式有意义的条件进行解答即可.【详解】解:∵有意义,∴,,解得:,故答案为:.【点睛】本题主要考查了二次根式和分式有意义的条件,解题的关键是熟练掌握二次根式被开方数为非负数,分式分母不等于0.10.若式子有意义,则的取值范围是______.【答案】且##x≠1且x≤2【分析】根据二次根式有意义的条件和零指数幂有意义的条件,列出不等式求解即可.【详解】解:根据有意义,可得:,解得:,根据有意义,可得:,解得:,综上可得:的取值范围是且.故答