如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
【导语】因为⾼⼆开始努⼒,所以前⾯的知识肯定有⼀定的⽋缺,这就要求⾃⼰要制定⼀定的计划,更要⽐别⼈付出更多的努⼒,相信付出的汗⽔不会⽩⽩流淌的,收获总是⾃⼰的。®⽆忧考⽹⾼⼆频道为你整理了《⾼⼆数学重点知识归纳》,助你⾦榜题名!【篇⼀】⾼⼆数学重点知识归纳函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间⽽⾔。判定⽅法有:定义法(作差⽐较和作商⽐较)导数法(适⽤于多项式函数)复合函数法和图像法。应⽤:⽐较⼤⼩,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,⽐较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。判别⽅法:定义法,图像法,复合函数法应⽤:把函数值进⾏转化求解。周期性:定义:若函数f(x)对定义域内的任意x满⾜:f(x+T)=f(x),则T为函数f(x)的周期。其他:若函数f(x)对定义域内的任意x满⾜:f(x+a)=f(x-a),则2a为函数f(x)的周期.应⽤:求函数值和某个区间上的函数解析式。【篇⼆】⾼⼆数学重点知识归纳1.数列的定义按⼀定次序排列的⼀列数叫做数列,数列中的每⼀个数都叫做数列的项(1)从数列定义可以看出,数列的数是按⼀定次序排列的,如果组成数列的数相同⽽排列次序不同,那么它们就不是同⼀数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同⼀数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某⼀个确定的数,是⼀个函数值,也就是相当于f(n),⽽项数是指这个数在数列中的位置序号,它是⾃变量的值,相当于f(n)中的n(5)次序对于数列来讲是⼗分重要的,有⼏个相同的数,由于它们的排列次序不同,构成的数列就不是⼀个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,⽽{2,3,4,5,6}中元素不论按怎样的次序排列都是同⼀个集合2.数列的分类(1)根据数列的项数多少可以对数列进⾏分类,分为有穷数列和⽆穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表⽰有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表⽰⽆穷数列.(2)按照项与项之间的⼤⼩关系或数列的增减性可以分为以下⼏类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按⼀定次序排列的⼀列数,其内涵的本质属性是确定这⼀列数的规律,这个规律通常是⽤式⼦f(n)来表⽰的,这两个通项公式形式上虽然不同,但表⽰同⼀个数列,正像每个函数关系不都能⽤解析式表达出来⼀样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,⼜不⼀定是的,仅仅知道⼀个数列前⾯的有限项,⽆其他说明,数列是不能确定的,通项公式更⾮.如:数列1,2,3,4,…,由公式写出的后续项就不⼀样了,因此,通项公式的归纳不仅要看它的前⼏项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前⼏项写出其通项公式,没有通⽤的⽅法可循.再强调对于数列通项公式的理解注意以下⼏点:(1)数列的通项公式实际上是⼀个以正整数集N*或它的有限⼦集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次⽤1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,⽤数列的通项公式也可判断某数是否是某数列中的⼀项,如果是的话,是第⼏项.(3)如所有的函数关系不⼀定都有解析式⼀样,并不是所有的数列都有通项公式.如2的不⾜近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不⼀定是的,正如举例中的:(5)有些数列,只给出它的前⼏项,并没有给出它的构成规律,那么仅由前⾯⼏项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每⼀项的序号与这⼀项有下⾯的对应关系:这就是说,上⾯可以看成是⼀个序号集合到另⼀个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是⼀个定义域为正整集N*(或它的有限⼦集{1,2,3,…,n})的函数,当⾃变量从⼩到⼤依次取值时,对应的⼀