基于LMS算法的自适应组合滤波器中英文翻译【完稿】.doc
上传人:天马****23 上传时间:2024-09-12 格式:DOC 页数:19 大小:1MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

基于LMS算法的自适应组合滤波器中英文翻译【完稿】.doc

基于LMS算法的自适应组合滤波器中英文翻译【完稿】.doc

预览

免费试读已结束,剩余 9 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

CombinedAdaptiveFilterwithLMS-BasedAlgorithms´Abstract:Acombinedadaptivefilterisproposed.ItconsistsofparallelLMS-basedadaptiveFIRfiltersandanalgorithmforchoosingthebetteramongthem.Asacriterionforcomparisonoftheconsideredalgorithmsintheproposedfilter,wetaketheratiobetweenbiasandvarianceoftheweightingcoefficients.Simulationsresultsconfirmtheadvantagesoftheproposedadaptivefilter.Keywords:Adaptivefilter,LMSalgorithm,Combinedalgorithm,Biasandvariancetrade-off1.IntroductionAdaptivefiltershavebeenappliedinsignalprocessingandcontrol,aswellasinmanypracticalproblems,[1,2].Performanceofanadaptivefilterdependsmainlyonthealgorithmusedforupdatingthefilterweightingcoefficients.ThemostcommonlyusedadaptivesystemsarethosebasedontheLeastMeanSquare(LMS)adaptivealgorithmanditsmodifications(LMS-basedalgorithms).TheLMSissimpleforimplementationandrobustinanumberofapplications[1–3].However,sinceitdoesnotalwaysconvergeinanacceptablemanner,therehavebeenmanyattemptstoimproveitsperformancebytheappropriatemodifications:signalgorithm(SA)[8],geometricmeanLMS(GLMS)[5],variablestep-sizeLMS(VSLMS)[6,7].EachoftheLMS-basedalgorithmshasatleastoneparameterthatshouldbedefinedpriortotheadaptationprocedure(stepforLMSandSA;stepandsmoothingcoefficientsforGLMS;variousparametersaffectingthestepforVSLMS).Theseparameterscruciallyinfluencethefilteroutputduringtwoadaptationphases:transientandsteadystate.Choiceoftheseparametersismostlybasedonsomekindoftrade-offbetweenthequalityofalgorithmperformanceinthementionedadaptationphases.WeproposeapossibleapproachfortheLMS-basedadaptivefilterperformanceimprovement.Namely,wemakeacombinationofseveralLMS-basedFIRfilterswithdifferentparameters,andprovidethecriterionforchoosingthemostsuitablealgorithmfordifferentadaptationphases.ThismethodmaybeappliedtoalltheLMS-basedalgorithms,althoughwehereconsideronlyseveralofthem.Thepaperisorganizedasfollows.AnoverviewoftheconsideredLMS-basedalgorithmsisgiveninSection2.Section3proposesthecriterionforevaluationandcombinationofadaptivealgorithms.Simula